The Classical Model Existence Theorem in Subclassical Predicate Logics I

  • Jui-Lin LeeEmail author
Part of the Trends in Logic book series (TREN, volume 28)


We prove that in predicate logics there are some classically sound Hilbert systems which satisfy the classical model existence theorem (every -consistent set has a classical model) but are weaker than first order logic.


extended completeness theorem strong completeness prenex normal form intuitionistic logic three-valued logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fitting, M., Intuitionistic Logic, Model Theory and Forcing, North-Holland Publishing Co., Amsterdam-London, 1969. zbMATHGoogle Scholar
  2. [2]
    Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic—Studia Logica Libraryvol. 4, Kluwer Academic Publishers, Dordrecht, 1998. zbMATHGoogle Scholar
  3. [3]
    Henkin, L., ‘The discovery of my completeness proofs’, Bulletin of Symbolic Logic, 2: 127–158, 1996. zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Hunter, G., Metalogic. An Introduction to the Metatheory of Standard First Order Logic, University of California Press, 1973. Google Scholar
  5. [5]
    Lee, J.-L., ‘On Gödel’s Completeness Theorem’, presented in 12th International Congress of Logic Methodology and Philosophy of Science, at Oviedo, Spain, August 2003. Google Scholar
  6. [6]
    Lee, J.-L., ‘Classical model existence theorem in propositional logics’, in Béziau, Jean-Yves, Costa-Leite, Alexandre (eds.), Perspectives on Universal Logic, Polimetrica, Monza, Italy, 2007, pp. 179–197. Google Scholar
  7. [7]
    Lee, J.-L., Classical model existence and resolution, manuscript, 2007. Google Scholar
  8. [8]
    Robbin, J.W., Mathematical Logic, W.A. Benjamin, Inc., New York-Amsterdam, 1969. zbMATHGoogle Scholar
  9. [9]
    Shapiro, S., ‘Classical logic II: Higher-order logic’, in Goble, L. (ed.), The Blackwell Guide to Philosophical Logic, Blackwell Publishers Ltd., 2001, pp. 33–54. Google Scholar
  10. [10]
    Shoenfield, J.R., Mathematical Logic, Addison-Wesley Publishing Co., Reading, MA, 1967. zbMATHGoogle Scholar
  11. [11]
    Sundholm, G., ‘Systems of deduction’, in Gabbay, D.M., Guenthner, F. (eds.), Handbook of Philosophical Logic, vol. 2, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1–52. Google Scholar
  12. [12]
    Tennant, N., ‘Minimal logic is adequate for popperian science’, The British Journal for the Philosophy of Science, 36: 325–329, 1985. zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhilosophyNational Chung-Cheng UniversityChia-YiTaiwan

Personalised recommendations