Processing Information from a Set of Sources

  • Arnon AvronEmail author
  • Jonathan Ben-Naim
  • Beata Konikowska
Part of the Trends in Logic book series (TREN, volume 28)


We introduce a general framework for solving the problem of a computer collecting and combining information from various sources. Unlike previous approaches to this problem, in our framework the sources are allowed to provide information about complex formulae too. This is enabled by the use of a new tool—non-deterministic logical matrices. We also consider several alternative plausible assumptions concerning the framework which lead to various logics. We provide strongly sound and complete proof systems for all the basic logics induced in this way.


information processing multiple sources non-deterministic matrices non-classical logics paraconsistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, A.R., Belnap, N.D., ‘First degree entailments’, Mathematische Annalen, 149: 302–319, 1963. zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Anderson, A.R., Belnap, N.D., Entailment, vol. 1, Princeton University Press, Princeton NJ, 1975. Google Scholar
  3. [3]
    Avron, A., ‘Natural 3-valued logics: Characterization and proof theory’, The Journal of Symbolic Logic, 56: 276–294, 1991. zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Avron, A., ‘Logical Non-determinism as a tool for logical modularity: an introduction’, in Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.), We Will Show Them: Essays in Honor of Dov Gabbay, vol. 1, College Publications, Ithaca, NY, 2005, pp. 105–124. Google Scholar
  5. [5]
    Avron, A., Lev, I., ‘Canonical propositional Gentzen-type systems’, in Goré, R., Leitsch, A., Nipkow, T., Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), LNAI, vol. 2083, Springer Verlag, 2001, pp. 529–544. Google Scholar
  6. [6]
    Avron, A., Lev, I., ‘Non-deterministic multiple-valued structures’, Journal of Logic and Computation, 15: 241–261, 2005. zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Avron, A., Ben-Naim, J., Konikowska, B., ‘Cut-free ordinary sequent calculi for logics having finite-valued semantics’, Logica Universalis, 1: 41–69, 2006. CrossRefMathSciNetGoogle Scholar
  8. [8]
    Belnap, N.D., ‘How computers should think’, in Rylem, G. (ed.), Contemporary Aspects of Philosophy, Oriel Press, Stocksfield, England, 1977, pp. 30–56. Google Scholar
  9. [9]
    Belnap, N.D., ‘A useful four-valued logic’, in Epstein, G., Dunn, J.M., Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 1977, pp. 7–37. Google Scholar
  10. [10]
    Carnielli, W.A., Lima-Marques, M., ‘Society semantics for multiple-valued logics’, in Carnielli, Walter A., D’Ottaviano, Itala M.L. (eds.), Proceedings of the XII EBL—Advances in Contemporary Logic and Computer Science, American Mathematical Society, Series Contemporary Mathematics, vol. 235, 1999, pp. 33–52. Google Scholar
  11. [11]
    Carnielli, W.A., Marcos, J., de Amo, S., ‘Formal inconsistency and evolutionary databases’, Logic and Logical Philosophy, 8: 115–152, 2000. zbMATHGoogle Scholar
  12. [12]
    Dunn, J.M., ‘Intuitive semantics for first degree entailments and “coupled trees''', Philosophical Studies, 29: 149–168, 1976. CrossRefMathSciNetGoogle Scholar
  13. [13]
    Dunn, J.M., ‘Relevant logic and entailment’, Handbook of Philosophical Logic, vol. III, Gabbay, D., Guenthner, F. (eds.), 1984. Google Scholar
  14. [14]
    Epstein, R.L., The semantic foundation of logic, 2nd ed., vol. I: Propositional Logics, ch. IX, Kluwer Academic Publisher, 1995. Google Scholar
  15. [15]
    Fitting, M., ‘Kleene’s three-valued logics and their children’, Fundamenta Informaticae, 20: 113–131, 1994. zbMATHMathSciNetGoogle Scholar
  16. [16]
    Ginsberg, M.L., ‘Multivalued logics: A uniform approach to reasoning in AI’, Computer Intelligence, 4: 256–316, 1988. Google Scholar
  17. [17]
    D’Ottaviano, I.L.M., da Costa, N.C.A., ‘Sur un problème de Jaśkowski’, Comptes Rendus de l’Académie des Sciences de Paris, 270: 1349–1353, 1970. zbMATHMathSciNetGoogle Scholar
  18. [18]
    D’Ottaviano, I.L.M., ‘The completeness and compactness of a three-valued first-order logic’, Revista Colombiana de Matematicas, XIX: 31–42, 1985. MathSciNetGoogle Scholar
  19. [19]
    Shramko, Y., Wansing, H., ‘Some useful 16-valued logics. How a computer network should think’, Journal of Philosophical Logic, 34: 121–153, 2005. zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Shramko, Y., Wansing, H., ‘Hyper-contradictions, generalized truth values, and logics of truth and falsehood’, Journal of Logic, Language and Information, 15: 403–424, 2006. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Arnon Avron
    • 1
    Email author
  • Jonathan Ben-Naim
    • 2
  • Beata Konikowska
    • 3
  1. 1.School of Computer ScienceTel-Aviv UniversityRamat AvivIsrael
  2. 2.CNRS Researcher in Computer ScienceUniversité Paul Sabatier, IRITToulouse Cedex 9France
  3. 3.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations