Advertisement

Commutativity of Quantifiers in Varying-Domain Kripke Models

  • Robert Goldblatt
  • Ian Hodkinson
Part of the Trends in Logic book series (TREN, volume 28)

Abstract

A possible-worlds semantics is defined that validates the main axioms of Kripke’s original system for first-order modal logic over varying-domain structures. The novelty of this semantics is that it does not validate the commutative quantification schema x y φ y x φ, as we show by constructing a counter-model.

Keywords

possible-worlds semantics commutative quantification premodel model Kripkean model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fine, Kit, ‘The permutation principle in quantificational logic’, Journal of Philosophical Logic 12: 33–37, 1983. MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Garson, James W., ‘Quantification in modal logic’, in Gabbay, D.M., Guenthner, F. (eds.), Handbook of Philosophical Logic, Vol. 3, 2nd edn., Kluwer Academic Publishers, Dordrecht, 2001, pp. 267–323. Google Scholar
  3. [3]
    Goldblatt, Robert, Mares, Edwin D., ‘A general semantics for quantified modal logic’, in Governatori, Guido, Hodkinson, Ian, Venema, Yde (eds.), Advances in Modal Logic, Vol. 6, College Publications, London, 2006, pp. 227–246. http://www.aiml.net/volumes/volume6/.
  4. [4]
    Kripke, Saul A., ‘Semantical considerations on modal logic’, Acta Philosophica Fennica, 16: 83–94, 1963. MATHMathSciNetGoogle Scholar
  5. [5]
    Makinson, D.C., ‘Some embedding theorems for modal logic’, Notre Dame Journal of Formal Logic, 12: 252–254, 1971. MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Mares, Edwin D., Goldblatt, Robert, ‘An alternative semantics for quantified relevant logic’, The Journal of Symbolic Logic, 71(1): 163–187, 2006. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Logic, Language and ComputationVictoria UniversityWellingtonNew Zealand
  2. 2.Department of ComputingImperial College LondonLondonUK

Personalised recommendations