Advertisement

Weak Implicational Logics Related to the Lambek Calculus—Gentzen versus Hilbert Formalisms

  • Wojciech ZielonkaEmail author
Part of the Trends in Logic book series (TREN, volume 28)

Abstract

It has been proved by the author that the product-free Lambek calculus with the empty string in its associative (L 0) and non-associative (NL 0) variant is not finitely Gentzen-style axiomatizable if the only rule of inference is the cut rule. We give here rather detailed outlines of the proofs for both L 0 and NL 0. In the last section, Hilbert-style axiomatics for the corresponding weak implicational calculi are given.

Keywords

Lambek calculus implicational logics finite axiomatizability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abrusci, V.M., ‘A comparison between Lambek syntactic calculus and intuitionistic linear propositional logic’, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 36: 11–15, 1990. zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Buszkowski, W., ‘The logic of types’, in Srzednicki, J. (ed.), Initiatives in Logic, M. Nijhoff, Amsterdam, 1987, pp. 180–206. Google Scholar
  3. [3]
    Cohen, J.M., ‘The equivalence of two concepts of categorial grammar’, Information and Control, 10: 475–484, 1967. zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Kandulski, M., ‘The non-associative Lambek calculus’, in Buszkowski, W., Marciszewski, W., van Benthem, J. (eds.), Categorial Grammar, J. Benjamins, Amsterdam, 1988, pp. 141–151. Google Scholar
  5. [5]
    Lambek, J., ‘The mathematics of sentence structure’, American Mathematical Monthly, 5: 154–170, 1958. CrossRefMathSciNetGoogle Scholar
  6. [6]
    Lambek, J., ‘On the calculus of syntactic types’, in Jakobson, R. (ed.), Structure of Language and Its Mathematical Aspects, AMS, Providence, 1961, pp. 166–178. Google Scholar
  7. [7]
    Urquhart, A., ‘Completeness of weak implication’, Theoria, 3: 274–282, 1971. MathSciNetGoogle Scholar
  8. [8]
    Zielonka, W., ‘Axiomatizability of Ajdukiewicz-Lambek calculus by means of cancellation schemes’, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27: 215–224, 1981. zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Zielonka, W., ‘Cut-rule axiomatization of product-free Lambek calculus with the empty string’, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 34: 135–142, 1988. zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Zielonka, W., ‘Cut-rule axiomatization of the syntactic calculus NL 0’, Journal of Logic, Language and Information, 9: 339–352, 2000. zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Zielonka, W., ‘Cut-rule axiomatization of the syntactic calculus L 0’, Journal of Logic, Language and Information, 10: 233–236, 2001. zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Zielonka, W., ‘On reduction systems equivalent to the Lambek calculus with the empty string’, Studia Logica, 71: 31–46, 2002. zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Zielonka, W., ‘On reduction systems equivalent to the non-associative Lambek calculus with the empty string’, Journal of Logic and Computation, 17: 299–310, 2007. zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations