Skip to main content

Abstract

The distribution of lightning around the planet is directly linked to the Earth’s climate, which is driven by solar insolation. The diurnal and seasonal heating of the continental landmasses results in large fluctuations in temperature, influencing atmospheric stability, and the development of thunderstorms. Lightning activity is positively correlated with surface temperatures on short time scales, and due to projections of a warmer climate in the future, one of the key questions is related to the impact of future global warming on lightning, thunderstorms, and other severe weather. Lightning itself is also linked to variations in upper tropospheric water vapour, and tropospheric ozone, both of which are strong greenhouse gases. Climate model studies show that in a future warmer climate we may have less thunderstorms overall, but more intense thunderstorms, which may increase the amount of lightning by 10% for every one degree global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D.J., and K.E. Pickering, 2002: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model, J. Geophys. Res., 107(D23), 4711, doi:10.1029/2002JD002066.

    Google Scholar 

  • Alpert, P., T. Ben-Gai, A. Baharad, Y. Benjamini, D. Yekutieli, M. Colacino, L. Diodato, C. Ramis, V. Homar, R. Romero, S. Michaelides, and A. Manes, 2002: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29, 11, 31-1–31-4.

    Article  Google Scholar 

  • Anyamba, E., E.R. Williams, J. Susskind, A. Fraser-Smith, M. Fullekrug, 2000: The manifestation of the Madden-Julian oscillation in global deep convection and in the Schumann resonance intensity, J. Atmos. Sci., 57, 1029–1044.

    Article  Google Scholar 

  • Baker, M.B., H.J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quart. J. Roy. Met. Soc., 121, 1525–1548.

    Article  Google Scholar 

  • Baker, M.B., A.M. Blyth, H.J. Christian, J. Latham, K.L. Miller, and A.M. Gadian, 1999: Relationship between lightning activity and various thundercloud parameters: Satellite and modeling studies, Atmos. Res., 51, 221–236.

    Article  Google Scholar 

  • Carey, L.D, and K.M Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms, Mon. Wea. Rev., 135(4), 1327–1353.

    Article  Google Scholar 

  • Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, et al., 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    Article  Google Scholar 

  • Del Genio, A.D., 2002: The dust settles on water vapor feedback. Science 296, 665–666.

    Article  Google Scholar 

  • Del Genio, A.D., Y. Mao-Sung, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    Article  Google Scholar 

  • Fullekrug, M., and A. Fraser-Smith, 1998: Global lightning and climate variability inferred from ELF field variations, Geophys. Res. Lett., 24, 2411–2414.

    Article  Google Scholar 

  • Futyan, J.M., and A.D. Del Genio, 2007: Relationships between lightning and properties of convective cloud clusters, Geophys. Res. Lett., 34, L15705, doi:10.1029/2007GL030227.

    Article  Google Scholar 

  • Grenfell, J.L., D.T. Shindell, and V. Grewe, 2003: Sensitivity studies of oxidative changes in the troposphere in 2100 using the GISS GCM, Atmos. Chem. Phys. Discuss., 3, 1805–1842.

    Google Scholar 

  • Grewe, V., 2007: Impact of climate variability on tropospheric ozone, Sci. Total Environ., 374(1), 167–181.

    Article  Google Scholar 

  • Hamid, E.Y., Z. Kawasaki, and R. Mardiana, 2001: Impact of the 1997–98 El Nino on lightning activity over Indonesia, Geophys. Res. Lett., 28, 147–150.

    Article  Google Scholar 

  • Heckman, S., E. Williams, and B. Boldi, 1998: Total global lightning inferred from Schumann resonance mesurements, J. Geophys. Res., 103, 31775–31779.

    Article  Google Scholar 

  • Hendon, H.H., and K. Woodberry, 1993: The diurnal cycle of tropical convection, J. Geophys. Res., 98(D9), 16623–16638.

    Article  Google Scholar 

  • Huntrieser, H., H. Schlager, A. Roiger, M. Lichtenstern, U. Schumann, C. Kurz, D. Brunner, C. Schwierz, A. Richter, and A. Stohl, 2007: Lightning-produced NOx over Brazil during TROCCINOX: Airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems, Atmos. Chem. Phys., 7, 2987–3013.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007: Climate Change 2007: The Physical Science Basis. World Meteorological Organization (WMO) and UN Environment Programme (UNEP).

    Google Scholar 

  • Jorgenson, D.P., and M.A. Lemone, 1989: Vertical velocity in oceanic convection off tropical Australia, J. Atmos. Sci., 51, 3183–3193.

    Google Scholar 

  • Lemone, M.A., and E.J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux, J. Atmos. Sci., 37, 2444–2457.

    Article  Google Scholar 

  • Lindzen, R.S., B. Kirtman, D. Kirk-Davidoff, and E.K. Schneider, 1995: Seasonal surrogate for climate, J. Clim., 8, 1681–1684.

    Article  Google Scholar 

  • Lyons, W.A., T.E. Nelson, E.R. Williams, S.A. Cummer, and M.A. Stanley, 2003: Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective system, Mon. Wea. Rev., 131, 2417–2427.

    Article  Google Scholar 

  • Markson, R., 2007: The global circuit intensity: Its measurement and variation over the last 50 years, Bull. Amer. Meteor. Soc., 88, 1–19.

    Google Scholar 

  • Markson, R., and C. Price, 1999: Ionospheric potential as a proxy index for global temperatures, Atmos. Res., 51, 309–314.

    Article  Google Scholar 

  • Nickolaenko, A.P., M. Hayakawa, and Y. Hobara, 1999: Long-term periodical variations in global lightning activity deduced from Schumann resonance monitoring, J. Geophys. Res., 104, 27585–27591.

    Article  Google Scholar 

  • Patel, A., 2001: Modulation of African lightning and rainfall by the global five day wave, MSc thesis, Department of Mechanical Engineering, MIT, Cambridge, MA, 176 pp.

    Google Scholar 

  • Petersen, W.A., S.W. Nesbitt, R.J. Blakeslee, R. Cifeli, P. Hein, and S.A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon, J. Clim., 15, 1278–1294.

    Article  Google Scholar 

  • Petersen, W.A., H.J. Christian, and S.A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning, Geophys. Res. Lett., 32, L14819, doi:10.1029/2005GL023236.

    Article  Google Scholar 

  • Price, C., 1993: Global surface temperatures and the atmospheric electrical circuit, Geophys. Res. Lett., 20, 1363–1366.

    Google Scholar 

  • Price, C., 2000: Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290–293.

    Article  Google Scholar 

  • Price, C., 2006: Global thunderstorm activity, in Sprites, Elves and Intense Lightning Discharges, M. Fullekrug, et al. (eds.), Springer, Amsterdam, The Netherlands, 85–99.

    Google Scholar 

  • Price, C., 2008: Lightning sensors for observing, tracking and nowcasting severe weather, Sensors, 8, 157–170.

    Article  Google Scholar 

  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933.

    Article  Google Scholar 

  • Price, C., and D. Rind, 1994: Possible implications of global climate change on global lightning distributions and frequencies, J. Geophys. Res., 99, 10823–10831.

    Article  Google Scholar 

  • Price, C., J. Penner, and M. Prather, 1997: NOx from lightning, part I: Global distribution based on lightning physics, J. Geophys. Res., 102, 5929–5941.

    Article  Google Scholar 

  • Price, C., and A. Melnikov, 2004: Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters, J. Atmos.Sol. Terr. Phys., 66, 1179–1185.

    Google Scholar 

  • Price, C., and M. Asfur, 2006a: Can lightning observations be used as an indicator of upper-tropospheric water vapor variability? Bull. Amer. Meteor. Soc., 87, 291–298.

    Article  Google Scholar 

  • Price, C., and M. Asfur, 2006b: Long term trends in lightning activity over Africa, Earth Planets Space, 58, 1–5.

    Google Scholar 

  • Price, C., O. Pechony, and E. Greenberg, 2007: Schumann resonances in lightning research, J. Lightning Res., 1, 1–15.

    Google Scholar 

  • Reeve, N., and R. Toumi, 1999: Lightning activity as an indicator of climate change, Quart. J. Roy. Met. Soc., 125, 893–903.

    Article  Google Scholar 

  • Rind, D., 1998: Just add water vapor, Science, 281, 1152.

    Article  Google Scholar 

  • Ryu, J.H., and G.S. Jenkins, 2005: Lightning-tropospheric ozone connections: EOF analysis of TCO and lightning data, Atmos. Environ., 39, 5799–5805.

    Article  Google Scholar 

  • Sato, M., and H. Fukunishi, 2005: New evidence for a link between lightning activity and tropical upper cloud coverage, Geophys. Res. Lett., 32, L12807, doi:10.1029/2005GL022865.

    Article  Google Scholar 

  • Satori, G., and B. Ziegler, 1996: Spectral characteristics of Schumann resonances observed in central Europe, J. Geophys. Res., 101, 29663–29669.

    Article  Google Scholar 

  • Satori, G., and B. Ziegler, 1999: El Nino related meridional oscillations of global lightning activity, Geophys. Res. Lett., 26, 1365–1368.

    Article  Google Scholar 

  • Satori, G., E. Williams, and V. Mushtak, 2008: ELF Electromagnetic Signatures of Global Lightning Activity, this volume.

    Google Scholar 

  • Schumann, U., and H. Huntrieser, 2007: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 2623–2818.

    Google Scholar 

  • Sekiguchi, M., M. Hayakawa, A.P. Nickolaenko, and Y. Hobara, 2006: Evidence on a link between the intensity of Schumann resonance and global surface temperature, Ann. Geophys., 24, 1809–1817.

    Article  Google Scholar 

  • Sherwood, S., V.T.J. Phillips, and J.S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning, Geophys. Res. Lett., 33, L05804, doi:10.1029/2005GL025242.

    Article  Google Scholar 

  • Shindell, D.T., G. Faluvegi, N. Unger, E. Aguilar, G.A. Schmidt, D.M. Koch, S.E. Bauer, and R.L. Miller, 2006: Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI, Atmos. Chem. Phys., 6, 4427–4459.

    Article  Google Scholar 

  • Toumi, R., and X. Qie, 2004: Seasonal variation of lightning on the Tibetan Plateau: A spring anomaly? Geophs. Res. Lett., 31, L04115, doi:10.1029/2003GL018930.

    Article  Google Scholar 

  • Wallace, J.M., and P.V. Hobbs, 2006: Atmospheric Science: An Introductory Survey, Academic Press, New York.

    Google Scholar 

  • Williams, E.R., 1992: The Schumann resonance: A global tropical thermometer, Science, 256, 1184–1187.

    Article  Google Scholar 

  • Williams, E.R., 1994: Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev., 122, 1917–1929.

    Article  Google Scholar 

  • Williams, E.R., 2005: Lightning and climate: A review, Atmos. Res., 76, 272–287.

    Article  Google Scholar 

  • Williams, E.R., et al., 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., LBA Special Issue, 107, D20, 8082, doi:10.1029/2001JD000380.

    Article  Google Scholar 

  • Williams, E., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast, J. Geophys. Res., 109, D16206, doi:10.1029/2003JD003833.

    Article  Google Scholar 

  • Williams, E.R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmos. Res., 76, 288–306.

    Article  Google Scholar 

  • Williams, E., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity, C. R. Physique, 3, 1277–1292.

    Article  Google Scholar 

  • Williams, E.R., and G. Satori, 2004: Lightning, thermodynamic and hydrological comparisons of the two tropical continental chimneys, J. Atmos. Sol. Terr. Phys., 66, 1213–1231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Price, C. (2009). Thunderstorms, Lightning and Climate Change. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_24

Download citation

Publish with us

Policies and ethics