Lightning in the Mediterranean in Relation with Cloud Microphysical Parameters

  • Dimitrios Katsanos
  • Vassiliki Kotroni
  • Kostas Lagouvardos


This chapter discusses the potential of using passive microwave satellite observations, radar, and numerical weather prediction model outputs for the investigation of the relation between lightning activity and the microphysical properties of clouds. The study concentrates in the Mediterranean area and for the winter period. Depressions of brightness temperatures at 85 GHz, measured by low orbiting satellites, are found to coincide with the areas where cloud to ground lightning occur, and thus this parameter is a useful tool which can be used as an indicator for the occurrence of lightning. The analysis of numerical weather prediction model outputs and lightning observations has been proved promising and showed that the time evolution of the profiles of solid hydrometeors relate positively with that of the lightning activity with an expected time lag, with the maximum lightning activity occurring soon after the maximization of the solid hydrometeor mixing ratio.


CG lightning Microphysical properties of clouds Convection Brightness Temperature Spaceborne radar Radar reflectivity Mesoscale modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo C., Solomon R., Goodman S., Cecil D., Dietrich S., and Mugnai A., 2003: Lightning and precipitation: Observational analysis of LIS and PR. Proceedings of 5th EGU Plinius Conference, Ajaccio, Corsica, France. Google Scholar
  2. Altaratz O., Levin Z., Yair Y., and Ziv B., 2003: Lightning activity over land and sea on the eastern coast of the Mediterranean. Mon. Wea. Rev., 131, 2060–2070.CrossRefGoogle Scholar
  3. Betz H.-D., Schmidt K., Oettinger P., and Wirz M., 2004: Lightning detection with 3D discrimination of intracloud and cloud-to-ground discharges, Geophys. Res. Lett., 31, L11108, doi:10.1029/2004GL019821.CrossRefGoogle Scholar
  4. Carey L.D., and Rutledge S.A., 2000: The relationship between precipitation and lightning in Tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687–2710.CrossRefGoogle Scholar
  5. Christian H. J., Blakeslee R. J., Boccippio D. J., Boeck W. L., Buechler D. E., Driscoll K. T., Goodman S. J., Hall J. M., Koshak W. J., Mach D. M., and Stewart M. F., 1999: Global frequency and distribution of lightning as observed by optical transient detector (OTD). Proceedings of 11th International Conference on Atmospheric Electricity, Huntsville, AL, NASA,726–729.Google Scholar
  6. Defer E., Lagouvardos K., and Kotroni V., 2005: Lightning activity in the eastern Mediterranean region. J. Geophys. Res., 110, D24210.CrossRefGoogle Scholar
  7. Dudhia J., 1993: A non-hydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.CrossRefGoogle Scholar
  8. Holt M. A., Hardaker P. J., and McClelland G. P., 2001: A lightning climatology for Europe and the UK, 1990–99. Weather, 56, 290–296.Google Scholar
  9. Hong S.-Y., and Pan H.-L., 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea. Rev., 124, 2322–2339.CrossRefGoogle Scholar
  10. Kain J.S., and Fritsch J.M., 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus in numerical models, Meteor. Monogr., No 46, Amer. Meteor., Soc., 165–177.Google Scholar
  11. Katsanos D., Lagouvardos K., Kotroni V., and Argiriou A. 2007a: Combined analysis of rainfall and lightning data produced by mesoscale systems in the central and eastern Mediterranean, Atmos. Res., Vol. 83.Google Scholar
  12. Katsanos D., Lagouvardos K., Kotroni V., and Argiriou A. 2007b: Correlation of lightning activity with microwave brightness temperatures and spaceborne radar reflectivity profiles in the Central and Eastern Mediterranean J .Appl. Meteor. & Climatol., Vol. 46.Google Scholar
  13. Kotroni, V., and Lagouvardos, K. 2001: Precipitation Forecast Skill of Different Convective Parameterization and Microphysical Schemes: Application for the Cold Season Over Greece, Geophys. Res. Lett., 28(10), 1977–1980.CrossRefGoogle Scholar
  14. Kotroni, V., and Lagouvardos, K. 2008: Lightning occurrence in relation with elevation, terrain slope and vegetation cover in the Mediterranean, J. Geophys. Res., doi:10.1029/2008JD010605, (in press)Google Scholar
  15. Lagouvardos K., and Kotroni V., 2007: TRMM and lightning observations of a low-pressure system over the Eastern Mediterranean. BAMS, 88, 1363–1367.CrossRefGoogle Scholar
  16. Lang T.J., and Rutledge S.A., 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 2492–2506.CrossRefGoogle Scholar
  17. Mohr K.I., Toracinta E.R., Zipser E.J., and Orville R.E., 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part II: SSM/I brightness temperatures and lightning. J. Appl. Meteor., 35, 919–931.CrossRefGoogle Scholar
  18. Orville R.E., 1981: Global distribution of midnight lightning September to November 1977. Mon. Wea. Rev., 109, 391–395.CrossRefGoogle Scholar
  19. Price C., and Rind D., 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 9919–9933.CrossRefGoogle Scholar
  20. Price C., and Federmesser B., 2006: Lightning–rainfall relationships in Mediterranean winter thunderstorms. Geophys. Res. Lett., 33, L07813.CrossRefGoogle Scholar
  21. Pruppacher H.R., and Klett J.D., 2000: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.Google Scholar
  22. Rakov V.A., and Uman M.A., 2003: Lightning. Physics and Effects. Cambridge University Press, Cambridge.Google Scholar
  23. Schultz P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123, 3331–3343.CrossRefGoogle Scholar
  24. Sherwood S.C., Phillips V.T.J., and Wettlaufer J.S., 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33, L05804.CrossRefGoogle Scholar
  25. Spencer R., Goodman H.M., and Hood R.E., 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254–273.CrossRefGoogle Scholar
  26. Tapia A., Smith J.A., and Dixon M., 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 1497–1509.CrossRefGoogle Scholar
  27. Toracinta E.R., and Zipser E.J., 2001: Lightning and SSM/I-ice-scattering mesoscale convective systems in the global tropics. J. Appl. Meteor., 40, 983–1002.CrossRefGoogle Scholar
  28. Toracinta E.R., Cecil D.J., Zipser E.J., and Nesbitt S.W., 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802–824.CrossRefGoogle Scholar
  29. Ulaby F.T., Moore R.K., and Fung A.K., 1981: Microwave Remote Sensing Active and Passive. Vol. 1: Fundamentals and Radiometry. Artech House Publishers, London.Google Scholar
  30. Ushio T., Heckman S.J., Boccippio D., Christian H.J., and Kawasaki Z.I., 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24089–24095.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dimitrios Katsanos
    • 1
  • Vassiliki Kotroni
  • Kostas Lagouvardos
  1. 1.Institute for Environmental Research and Sustainable Development National Observatory of AthensGreece

Personalised recommendations