Skip to main content

Schumann Resonance Signatures of Global Lightning Activity

  • Chapter

Abstract

This chapter is concerned with the Earth’s Schumann resonances (SR) and their application to understanding global lightning. The natural electromagnetic waves in the SR frequency range (5 Hz to approx. 60 Hz) radiated by lightning discharges are contained by the Earth-ionosphere cavity. This cavity excitation by lightning can occur as a single energetic flash (a ‘Q-burst’), or as an integration of a large number of less energetic flashes (the ‘background’ resonances). In principle, continuous observations of SR parameters (modal amplitudes, frequencies, and quality factors) provide invaluable information for monitoring the worldwide lightning activity from a single SR station. Relationships between the variation of SR intensity and global lightning activity are shown. Connections between the change of diurnal modal SR frequency range and the areal variation of worldwide lightning are demonstrated. The temporal variation of the diurnal SR frequency patterns characteristic of the global lightning dynamics is also presented. Distortions of ELF waves propagating between the lightning sources and the observer are theoretically discussed based on the TDTE (two-dimensional telegraph equation) technique, focusing on the role of the day-night asymmetry of the Earth-ionosphere cavity. Theoretical and observational results are compared. Both instruments for SR observations and spectral methods for deducing SR parameters are reviewed. Experimental findings by SR on global lightning variations on different time scales (diurnal, seasonal, intraseasonal, annual, semiannual, interannual, 5-day, long-term) are summarized. The growing use of SR measurements as a natural diagnostic for global climate change is emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anyamba E, Williams ER, Susskind J, Fraser-Smith A, Füllekrug M (2000) The manifestation of the Madden-Julian oscillation in global deep convection and in the Schumann resonance intensity, J. Atmos. Sci., 57, 1029–1044

    Article  Google Scholar 

  • Ádám A, Duma G, Horváth J (1990) A new approach to the electrical conductivity anomalies in the Drauzug-Bakony geological unit, Physics of the Earth and Planetary Interiors, Volume 60, Issue 1–4, 155–162

    Article  Google Scholar 

  • Baker MB, Christian HJ, Latham J (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quart. J. Roy. Met. Soc., 121, 1525–548

    Article  Google Scholar 

  • Balser M, Wagner CA (1962) On Frequency Variations of the Earth-Ionosphere Cavity Modes, Journal of Geophysical Research 67, pp. 4081–4083

    Article  Google Scholar 

  • Banks RJ (1975) Complex demodulation applied to Pi2 geomagnetic pulsations. Geophys. J. R. Astr. Soc,. 58, 471–493

    Google Scholar 

  • Bashkuev Y, Khaptanov V (1999) Deep radio impedance sounding of the crust using the electromagnetic field of a VLF radio installation, Izvestiya. Physics of the Solid Earth, 37(2), 157

    Google Scholar 

  • Beamish D, Hanson HW, Webb DC (1979) Complex demodulation applied to Pi2 geomagnetic pulsations. Geophys. J. R. Astr. Soc., 58, 471–493

    Google Scholar 

  • Blakeslee RJ, Christian HJ, Vonnegut B (1989) Electrical measurements over thunderstorms, J. Geophys. Res., 94, 13135–13140

    Article  Google Scholar 

  • Boccippio DJ, Williams E, Heckman SJ, Lyons WA, Baker I, Boldi R (1995) Sprites, ELF transients and positive ground strokes, Science, 269, 1088–1091

    Article  Google Scholar 

  • Boccippio DJ, Wong C, Williams ER, Boldi R, Christian HJ, Goodman SJ (1998) Global validation of single-station Schumann resonance lightning location, J. Atmos. Sol. Terr. Phys., 60, 701–712

    Article  Google Scholar 

  • Boccippio DJ (2001) Lightning scaling relations revisited, J. Atmos. Sci., 59, 1086–1104

    Article  Google Scholar 

  • Burke CP, Jones DL (1995) Global radiolocation in the lower ELF frequency band, J. Geophys. Res., 100, 26263–26271

    Article  Google Scholar 

  • Burpee RW (1976) Some features of global scale 4–5 day waves, J. Atmos. Sci., 33 2292–2299

    Article  Google Scholar 

  • Castro DS (2000) The relationship between precipitation and electromagnetic signals in Schumann resonances, M. Eng. Thesis, Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108 (D1), 4005, doi:10.1029/2002JD002347

    Article  Google Scholar 

  • Chronis TG, Williams E, Anagnostou M, Petersen W (2007) African lightning: Indicator of tropical Atlantic cyclone formation. EOS, Transactions, American Geophysical Union, 88 (40),397–408

    Article  Google Scholar 

  • Chronis TG, Williams E, Anagnostou EN (2007) Evidence of tropical forcing of the 6.5-day wave from lightning observations over Africa, J. Atmos. Sci., 64, 3717–3721

    Article  Google Scholar 

  • Clayton M, Polk C (1977) Diurnal variation and absolute intensity of world-wide lightning activity, September 1970 to May 1971, in Electrical Processes in Atmospheres, H. Dolezalek and R. Reiter, Eds., Steinkopff, 440–449

    Google Scholar 

  • Cole RK Jr (1965) The Schumann resonances. Journal of Research of the National Bureau of Standards, 69D, 1345–1349

    Google Scholar 

  • Cummer SA, Inan US (1997) Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731

    Article  Google Scholar 

  • Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525

    Article  Google Scholar 

  • Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res., 112, D03103, doi:10.1029/2006JD007195

    Article  Google Scholar 

  • Füllekrug M (1994) Schumann-resonances in magnetic field components, J. Atmos. Terr. Phys., 57 (5), 479–484, 1994

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1996) Further evidence for global correlation of the Earth-ionosphere cavity resonances, Geophys. Res. Lett., 23, 2773–2776

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith A (1997) Global lightning and climate variability inferred from ELF field variations, Geophys. Res. Lett., 24, 2411–2414

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC, Bering EA, Few AA (1999) On the hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field, J. Atmos. Sol. Terr. Phys., 61, 745–750

    Article  Google Scholar 

  • Füllekrug M, Constable S (2000) Global triangulation of intense lightning discharges, Geophys. Res. Lett., 27, 3, 333

    Article  Google Scholar 

  • Füllekrug M, Price C, Yair Y, Williams ER (2002) Oceanic lightning, Ann. Geophys., 20, 133–137

    Google Scholar 

  • Greenberg E, Price C, Yair Y, Ganot M., Bór J, Sátori G (2007) ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms, J. Atmos. Solar-Terr. Physics, 69, 1569–1586

    Article  Google Scholar 

  • Greifinger C, Greifinger P (1978) Approximate method for determining ELF eigenvalues in the Earth-ionosphere waveguide. Radio Science 13, pp. 831–837

    Article  Google Scholar 

  • Greifinger P, Mushtak V, Williams E (2005) The lower characteristic ELF altitude of the Earth-ionosphere waveguide: Schumann resonance observations and aeronomical estimates. Proc. of VI International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology ( St.-Petersburg, Russia), pp. 250–254

    Google Scholar 

  • Greifinger PS, Mushtak VC, Williams ER (2007) On modeling the lower characteristic ELF altitude from aeronomical Data, Radio Science 42, RS2S12, doi:10.1029/2006RS003500

    Article  Google Scholar 

  • Hansen JE, Lebedeff S (1987) Global trends of measured surface air temperature, J. Geophys. Res., 92, 13345–13372

    Article  Google Scholar 

  • Hargreaves JK (1992) The Solar-Terrestrial Environment. Cambridge University Press, 420

    Google Scholar 

  • Harrison H (2006) Atmospheric voltage gradients at the Kennedy Space Center, 1997–2005: No evidence for effects of global warming or modulation by galactic cosmic rays, Geophys. Res. Lett., 33, L10814, doi:10.1029/2006GL025880

    Article  Google Scholar 

  • Harrison RG, and Ingram WJ (2005) Air-earth current measurements at Kew, London, 1909–1979, Atmos. Res., 76, 49–64

    Article  Google Scholar 

  • Harrison RG (2002) Twentieth century secular decrease in the atmospheric potential gradient Geophys. Res. Lett., 29, 10.1029/2002GL014878

    Article  Google Scholar 

  • Hayakawa M, Sekiguchi M, Hobara Y, Nickolaenko AP (2006) Intensity of Schumann resonance oscillations and the ground surface temperature, J. Atmos. Electr., 26, 79–93

    Google Scholar 

  • Heckman S (1998) The day-night asymmetry, paper presented at Schumann Resonance Symposium and Workshop, U. S.-Hung. Sci. and Technol. Joint Fund, Sopron, Hungary, 7–10 Sept

    Google Scholar 

  • Heckman S, Williams E, Boldi R (1998) Total global lightning inferred from Schumann resonance measurements, J. Geophys. Res., 103, 31775–31779

    Article  Google Scholar 

  • Herman A, Kumar V, Arkin P, Kousky J (1997) Objectively-determined 10-day African rainfall estimates created for famine early warning systems, Int. J. Remote Sensing, 18, 2147–2159

    Article  Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Tsuchiya N, Williams ER, Sera M, Ikegami Y, Hayakawa M (2000) New ELF observation site in Moshiri, Hokkaido, Japan and the results of preliminary data analysis, J. Atmos. Elec., 20, 99–109

    Google Scholar 

  • Hobara Y, Hayakawa M, Williams E, Boldi R, Downes E (2006) Location and electrical properties of sprite-producing lightning from a single ELF site, in Sprites, Elves and Intense Lightning Discharges. Ed. M. Füllekrug, E.A. Mareev and M.J. Rycroft, NATO Science Series, II. Mathematics, Physics and Chemistry 225, Springer, 398 pp

    Google Scholar 

  • Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104, 16943–16964

    Article  Google Scholar 

  • Ishaq M, Jones DL (1977) Method of obtaining radiowave propagation parameters for the Earth-ionosphere duct at E.L.F., Electronics Letters 13, pp. 254–255

    Article  Google Scholar 

  • Kemp DT (1971) The global location of large lightning discharges from single station observations of ELF disturbances in the Earth-ionospheric cavity, J. Atmos. Terr. Phys., 33, 919–928

    Article  Google Scholar 

  • Kemp DT, Jones DL (1971) A new technique for the analysis of transient ELF electromagnetic disturbances within the Earth-ionosphere cavity. J. Atmos. Terr. Phys., 33, 567–572

    Article  Google Scholar 

  • Kirillov VV, Kopeykin VN, Mushtak VC (1997) ELF electromagnetic waves within the Earth-ionosphere waveguide. Geomagnetizm i Aeronomiya, 37, 114–120 [in Russian]

    Google Scholar 

  • Kirillov VV (2002) Solving a two-dimensional telegraph equation with anisotropic parameters. Radiophysics and Quantum Electronics, 45, 929–941

    Article  Google Scholar 

  • Lay EH, Jacobson AR, Holzworth RH, Rodger CJ, Dowden RL (2007) Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network, J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944

    Article  Google Scholar 

  • Lele MI, Lamb PJ (2007) Variability of intertropicalfront and rainfall over West African Soudano-Sahelzone, African Monsoon and Multidisciplinary Analysis, 2nd International Conference, (Ed’s. I. Genau, E.van den Akker and J.-L. Redelsperger,page 28,Karlsruhe, Germany,November)

    Google Scholar 

  • Madden T, Thompson W (1965) Low frequency electromagnetic oscillations of the Earth-ionosphere cavity. Rev. Geophys., 3, 211–254

    Article  Google Scholar 

  • Madden R, Julian P (1972a) Further evidence of global-scale, 5-day pressure waves, J. Atmos. Sci., 29, 1464–1469

    Article  Google Scholar 

  • Madden R, Julian P (1972b) Description of global scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 29, 1109–1123

    Article  Google Scholar 

  • Madden R, Julian P (1994) Observation of the 40–50 day tropical oscillation—A review, Mon. Wea. Rev., 122, 814–837

    Article  Google Scholar 

  • Märcz F, Harrison RG (2003) Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew, Ann. Geophys., 21, 2193–2200

    Google Scholar 

  • Markson R (2007) The global circuit intensity: Its measurement and variation over the last 50 years, Bull. Am. Met. Soc., DOI:10.1175/BAMS-88-2-223, 223-241

    Google Scholar 

  • MushtakV, Boldi R, Williams E (1999) Schumann resonances and the temporal-spatial dynamics of global thunderstorm activity. Proc. of XI International Conference on Atmospheric Electricity (Guntersville, Alabama), pp. 698–700

    Google Scholar 

  • Mushtak VC, Williams E (2002) ELF propagation parameters for uniform models of the Earth-ionosphere waveguide, J. Atmos. Solar-Terr. Phys., 64, 1989–2001

    Article  Google Scholar 

  • Mushtak VC, Williams ER (2008) An improved Lorentzian technique for evaluating resonance characteristics of the Earth-ionosphere cavity, Atmospheric Research, (in review)

    Google Scholar 

  • Neska M, Sátori G (2006) Schumann resonance observation at Polish Polar Station at Spitsbergen as well as in Central Geophysical Observatory in Belsk, Poland, Przegl. Geofiz. Engl. Transl., 3–4, 189

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1995) Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode, J. Atmos. Terr. Phys., 57, 1345–1348

    Article  Google Scholar 

  • Nickolaenko AP, Sátori G, Zieger B, Rabiniwicz LM, Kudintseva IG (1998) Parameters of global thunderstorm activity deduced from long-term Schumann resonance records. J. Atmos. Sol. Terr. Phys., 60, 387–399

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M, Hobara Y (1999) Long-term periodic variations in the global lightning activity deduced from the Schumann resonance monitoring, J. Geophys. Res., 104(D22), 27 585.27 591

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity, Kluwer Academic Publishers

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2007a) Diurnal variations in Schumann resonance intensity in local and universal times, J. Atmos. Elec., 27, 83–93

    Google Scholar 

  • Nickolaenko AP, Hayakawa M (2007b) Recent studies of Schumann resonances and ELF transients, J. Atmos. Elec., 27, 19–39

    Google Scholar 

  • Ogawa T, Tanaka Y, Yasuhara M (1967) Worldwide simultaneity of occurrence of a Q-type ELF burst, J. Geomagnetism and Geoelectricity, 377–384

    Google Scholar 

  • Ogawa T, Tanaka Y, Yasuhara M (1969) Schumann resonances and worldwide thunderstorm activity, in Planetary Electrodynamics, Vol. 2, Ed., S.C. Coroniti and J. Hughes, Gordon and Breach, New York

    Google Scholar 

  • Ogawa T, Komatsu M (2008) Q-Bursts from various distances on the Earth, Atmospheric Research, (in press)

    Google Scholar 

  • Ondrášková A, Kostecký P, Ševčík S, Rosenberg L (2007) Long-term observations of Schumann resonances at Modra Observatory, Radio Sci. , 42, RS2S09, doi:10.1029/2006RS003478

    Article  Google Scholar 

  • Orlanski I, Polinksy LJ (1977) Spatial distribution of cloud cover over Africa, J. Met. Soc. Japan, 55, 5

    Google Scholar 

  • Patel AC (2001) Modulation of African lightning and rainfall by the global 5-day wave, M. Eng. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Pinto O Jr, Pinto IRCA (2008) About the sensitivity of cloud-to-ground lightning activity to surface air temperature changes at different time scales in the city of Sao Paulo, Brazil, J. Geophys. Res., (in press)

    Google Scholar 

  • Price C (2000) Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290–293

    Article  Google Scholar 

  • Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies, J. Geophys. Res., 99, 10823–10831

    Article  Google Scholar 

  • Price C, Melnikov A (2004) Diurnal, seasonal and interannual variations in Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., 66, 1179–1185

    Google Scholar 

  • Price C, Greenberg E, Yair Y, Sátori G, Bór J, Fukunishi H, Sato M, Israelevich P, Moalem M, Devir A, Levin Z, Joseph HJ, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia, Geophys. Res. Lett., VOL. 31, L20107,doi:10.1029/2004GL020711

    Article  Google Scholar 

  • Price C, Asfur M (2006) Can lightning observations be used as an indicator of upper-tropospheric water vapor availability, Bull. Am. Met. Soc., 87, 291–298

    Article  Google Scholar 

  • Ramel R, Gallée H, Messager C (2006) On the northward shift of the West African monsoon, Climate Dynamics, DOI 10.10078/s00382-005-0093-5

    Google Scholar 

  • Retalis DA (1981) Study of the air-earth current density in Athens, Pageoph., 136, 217–233

    Article  Google Scholar 

  • Roemer HR (1961) On Extremely Low Frequency Spectrum of the Earth-Ionosphere Cavity Response to Electrical Storms. J. Geophys. Res., 66, 1580–1584

    Article  Google Scholar 

  • Roldugin VC, Maltsev YV, Vasiljev AN, Schokotov AY, Belyajev GG (2004) Schumann resonance frequency increase during solar X-ray bursts. Journal of Geophysical Research 109, A01216

    Article  Google Scholar 

  • Sato M, Fukunishi H, Kikuchi M, Yamagishi H, Lyons WA (2003) Validation of sprite-inducing cloud-to-ground lightning based on ELF observations at Showa station in Antarctica, J. Atmos. Sol. Terr. Phys., 65, 607–614

    Article  Google Scholar 

  • Sátori G, Szendrői J, Verő J (1996) Monitoring Schumann resonances – I. Methodology, J. Atmos. Terr. Phys., 58 (13), 1475–1481

    Article  Google Scholar 

  • Sátori G (1996) Monitoring Schumann resonances – II. Daily and seasonal frequency variations, J. Atmos. Terr. Phys., 58 (13), 1483–1488

    Article  Google Scholar 

  • Sátori G, Zieger B (1996) Spectral characteristics of Schumann resonances observed in central Europe, J. Geophys. Res., 101, 29663–29669

    Article  Google Scholar 

  • Sátori G, Zieger B (1999) El Niňo-related meridional oscillation of global lightning activity, Geophys. Res. Lett., 26, 1365–1368

    Article  Google Scholar 

  • Sátori G, Williams E, Zieger B, Boldi R, Heckman S, Rothkin K (1999) Comparisons of long-term Schumann resonance records in Europe and North America, 11^th International Conference on Atmospheric Electricity, NASA/CP-1999–209261, 705–708, Guntersville, Alabama,June 7–11

    Google Scholar 

  • Sátori G, Neska M, Williams E, Szendrői J (2007) Signatures of the non-uniform Earth-ionosphere cavity in high-time resolution Schumann resonance records, Radio Science, Vol.42,No.2,RS2S10 10.1029/2006RS003483

    Article  Google Scholar 

  • Sátori G, Williams E, Lemperger I (2008) Variability of global lightning activity on the ENSO time scale, Atmospheric Research, (in print)

    Google Scholar 

  • Schumann WO (1952) Über die strahlunglosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhülle umgeben ist, Z. Naturforsch. A, 7, 6627– 6628

    Google Scholar 

  • Sekiguchi M, Hayakawa M, Nickolaenko AP, Hobara Y (2006) Evidence for a link between the intensity of Schumann resonances and global surface temperature, Ann. Geophys., 24, 1809–1817

    Article  Google Scholar 

  • Sekiguchi M, Hobara Y, Hayakawa M (2008) Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, J. Atmos. Electr., 28, 1–10

    Google Scholar 

  • Sentman DD (1987) PC monitors lightning worldwide, Computer Science, 1, 25

    Google Scholar 

  • Sentman DD (1987) Magnetic elliptical polarization of Schumann resonances. Radio Science,22, 595

    Article  Google Scholar 

  • Sentman DD (1995) Schumann Resonances, in Handbook of Atmospheric Electrodynamics, vol. 1, edited by H. Volland, p. 276, CRC Press, London

    Google Scholar 

  • Simpson JJ, Taflove A (2006) A novel ELF radar for major oil deposits, IEEE Geoscience and Remote Sensing Lett., 3(1), 36

    Article  Google Scholar 

  • Talaat ER, Yee JH, Zhu X (2001) Observations of the 6.5 day wave in the mesosphere and lower thermosphere, J. Geophys. Res., 106, 20715–20724

    Article  Google Scholar 

  • Toracinta ER, Zipser EJ (2001) Lightning and SSM/I-Ice-scattering mesoscale convective systems in the global tropics, J. Appl. Met., 40, 983–1002

    Article  Google Scholar 

  • Trenberth KE (1981) Seasonal variation in global sea level pressure and the total mass of the atmosphere, J. Geophys. Res., 86, 5238–5246

    Article  Google Scholar 

  • Verő J (1972) On the determination of the magneto-telluric impedance tensor. Acta Geod. Geophys. Mont. Acad. Sci. Hung. 7(3–4), 333–351

    Google Scholar 

  • Wait JR (1962) Electromagnetic Waves in Stratified Media, 2nd ed., Pergamon Press, New York, NY, p. 153, Section 5

    Google Scholar 

  • Williams ER (1992) The Schumann resonance: A global tropical thermometer, Science, 256, 1184–1187

    Article  Google Scholar 

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev., 122, 1917–1929

    Article  Google Scholar 

  • Williams ER (1998) The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689–692

    Article  Google Scholar 

  • Williams ER (1999) Global circuit response to temperature on distinct time scales: A status report, in Atmospheric and Ionospheric Phenomena Associated with Earthquakes, Ed., M. Hayakawa), Terra Scientific Publishing (Tokyo)

    Google Scholar 

  • Williams ER (2003) Comments on: “Twentieth century secular decrease in the atmospheric potential gradient” by Giles Harrison: Global changes in current or local changes in air pollution?, Geophys. Res. Lett., doi:10.1029/2003GL017094

    Google Scholar 

  • Williams ER (2005) Lightning and climate: A review, Atmospheric Research, 76, 272–287

    Article  Google Scholar 

  • Williams ER (2008) The global electrical circuit: A review, Atmospheric Research, in final review

    Google Scholar 

  • Williams ER, Renno NO (1993) An analysis of the conditional instability of the tropical atmosphere, Mon. Wea. Rev., 121, 21–36

    Article  Google Scholar 

  • Williams ER (2001) Sprites, elves and glow discharge tubes, Physics Today, November, 41–47

    Google Scholar 

  • Williams ER, Coauthors (2002) Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., LBA Special Issue, 107, D20, 8082, doi:10.1029/2001JD000380

    Article  Google Scholar 

  • Williams E, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity, Comptes Rendus—Physique, 3, 1277–1292

    Article  Google Scholar 

  • Williams ER, Sátori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol. Terr. Phys., 66, 1213–1231

    Article  Google Scholar 

  • Williams E, Markson R, Heckman S (2005) Shielding effects of trees on the measurement of the Earth’s electric field: Implications for secular variations of the global electrical circuit, Geophys. Res. Lett., 32, L19810, doi:10.1029/2005GL023717

    Article  Google Scholar 

  • Williams ER, Mushtak VC, Rosenfeld D, Goodman SJ, Boccippio DJ (2005) Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmospheric Research, 76, 288–306

    Article  Google Scholar 

  • Williams E, Boldi R, Bór J, Sátori G, Price G, Greenburg E, Takahashi Y, Yamamoto K, Chronis T, Anagnostou E, Smith D, Lopez L (2006) Lightning flashesconducive to the production and escape of gamma radiation to space, J. Geophys. Res., 111, D16209, doi:10.1029/2005JD006447Williams ER, Mushtak VC, Nickolaenko AP (2006) Distinguishing ionospheric models using Schumann resonance spectra. J. Geophys. Res., 111, D16107, doi:10.1029/2005JD006944

    Article  Google Scholar 

  • Williams ER, Yair Y (2006) The microphysical and electrical properties of sprite-producing thunderstorms, in Sprites, Elves and Intense Lightning Discharges, Ed. M. Füllekrug, E.A. Mareev and M. J. Rycroft, NATO Science Series, II Mathematics, Physics and Chemistry- Vol. 225, Springer

    Google Scholar 

  • Williams E, Downes E, Boldi R, Lyons W, Heckman S (2007) Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488

    Article  Google Scholar 

  • Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki Z-I (2007) Sprite lightning hear around the world by Schumann resonance methods, Radio Science. 42, RS2S20, doi:10.1029/2006RS003498

    Article  Google Scholar 

  • Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki Z-I (2008) Reply to Comment by A. Nickolaenko and M. Hayakawa on Manuscript “Sprite Lightning Heard round the World by Schumann Resonance Methods” (accepted for publication in Radio Science)

    Google Scholar 

  • Wormell TW (1930) Vertical electric currents below thunderstorms and showers, Proc. Roy. Soc., A, 127, 567–590

    Article  Google Scholar 

  • Wormell TW (1953) Atmospheric electricity: some recent trends and problems, Quart. J. Roy. Met. Soc., 79, 474–489

    Article  Google Scholar 

  • Yang H, Pasko VP (2005) Three dimensional finite difference time domain modeling of the Earth – ionosphere cavity resonances, Geophys. Res. Lett., 32, L03114, doi:10.1029/2004GL021343

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments, J. Geophys. Res., 110, D2103, doi:10.1029/2004JD005263

    Article  Google Scholar 

  • Zieger B, Sátori G (1999) Periodic variations of solar and tropospheric origins in Schumann resonances, Proceeding of the 11^th International Confence on Atmospheric Electricity, Alabama, USA, 701–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sátori, G., Mushtak, V., Williams, E. (2009). Schumann Resonance Signatures of Global Lightning Activity. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_16

Download citation

Publish with us

Policies and ethics