Nowcasting of Thunderstorms Using VHF Measurements

  • Jean-Yves Lojou
  • Martin J. Murphy
  • Ronald L. Holle
  • Nicholas W.S. Demetriades


Cloud electrical activity represents a significant portion of the ability to determine thunderstorm severity. The radiation processes that are involved in cloud lightning lead to a very rich information source for those events in the VHF spectrum. Two types of events occur concomitantly: (1) very short duration impulsive events easily locatable with time-of-arrival techniques; and (2) almost continuous events well suited for interferometric location. These two mapping methods are described in some detail in this chapter, and some comparisons of the results from each method are shown at the flash and storm levels. The comparisons demonstrate a great deal of similarity, despite the fact that these two methods do not display the same individual components within the lightning flash. This chapter concludes with a sample application for nowcasting the thunderstorm threat by showing the great improvement resulting from the use of such VHF location information in thunderstorms warnings.


Total Lightning Cloud Discharge VHF Nowcasting Warning Mapping Interferometry Time-of-Arrival Storm Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boccippio, D.J., Cummins, K.L., Christian, H.J., Goodman, S.J.: Combined satellite and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev. 129, 108–122 (2001).CrossRefGoogle Scholar
  2. Brook, M. and T. Ogawa, The cloud discharge. In Lightning, vol. 1, Physics of Lightning, R. Golde (ed.), Academic Press, London, pp. 191–230 (1977).Google Scholar
  3. Krehbiel, P., Hamlin, T., Zhang, Y., Harlin, J., Thomas, R., Rison, W.: Three-dimensional total lightning observations with the lightning mapping array. Preprints, Intl. Lightning Detection Conf., Oct. 16–18, Tucson, Arizona, Vaisala, 6 pp. (2002).Google Scholar
  4. Krehbiel, P., Hamlin, T., Harlin, J., Thomas, R., Rison, W., Zhang, Y.: Thunderstorm observations with the Lightning Mapping Array. Proceedings, 12th Intl. Conf. on Atmospheric Electricity, June 9-13, Versailles, France, 147–150 (2003).Google Scholar
  5. LeVine, D.M.: Sources of the strongest RF radiation from lightning. J. Geophys. Res., 85, 4091–4095 (1980).CrossRefGoogle Scholar
  6. Loboda, M., G. Maslowski, Z. Dziewit, H.D. Betz, B. Fuchs, P. Oettinger, K. Schmidt, M. Wirz, and J. Dibbern, A new lightning detection network in Poland. International Conference on Grounding and Earthing/2nd International Conference on Lightning Physics and Effects, November 26–29, Maceio, Brazil, 487–494 (2006).Google Scholar
  7. Lojou, J.Y., K.L. Cummins: On the representation of two- and three-dimensional total lightning information. Conf. on Meteorological Applications of Lightning Data, San Diego, Cal., Amer. Meteor. Soc., paper 2.4 (2005).Google Scholar
  8. Lojou, J.Y., K.L. Cummins: Recent Comparisons of VHF Lightning Mapping Using Interferometry and Time-of-Arrival Techniques, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract AE43A-02 (2005).Google Scholar
  9. Lojou, J.Y., K.L. Cummins: Total Lightning Mapping Using Both VHF Interferometry and Time of Arrival Techniques, 28th Intl. Conf. on Lightning Protection, Sept 18–22, Kanazawa, Japan, (2006).Google Scholar
  10. MacGorman, D.R., Burgess, D.W., Mazur, V., Rust, W.D., Taylor, W.L., Johnson B.C.: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250 (1989).CrossRefGoogle Scholar
  11. MacGorman, D., Apostolakopoulos, I., Nierow, A., Murphy, M., Demetriades, N., Cramer, J., Krehbiel, P.: Improved timeliness of thunderstorm detection from mapping a larger fraction of lightning flashes. Lightning Imaging Sensor Intl. Workshop, 11–14 September, Huntsville, Ala., Univ. of Ala. Huntsville and National Space Science and Tech. Center. (2006).Google Scholar
  12. Malan, D.J.: Physics of lightning. English Univ. Press, London, 176 pp. (1963).Google Scholar
  13. Mazur, V., Krehbiel, P.R., Shao, X.M.: Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash. J. Geophys. Res., 100, 25731–25753 (1995).CrossRefGoogle Scholar
  14. Mazur, V., Shao, X.M., Krehbiel, P.R.: “Spider” lightning in intracloud and positive cloud-to-ground flashes. J. Geophys. Res., 103, 19811–19822 (1998).CrossRefGoogle Scholar
  15. Murphy, M., Holle R. : Warnings of cloud-to-ground lightning hazard based on combinations of lightning detection and radar information. Preprints, Intl. Lightning Detection Conf., Apr. 24–25, Tucson, Arizona, Vaisala, 6 pp. (2006).Google Scholar
  16. Murphy, M.J., N.W.S. Demetriades, K.L. Cummins, and R.L. Holle, Cloud lightning from the U.S. National Lightning Detection Network (NLDN), 13th International Conference on Atmospheric Electricity, August 13–17, Beijing, China, 4 pp. (2007).Google Scholar
  17. Patrick, G.R. and N.W.S. Demetriades: Using LDAR II total lightning data in an operational setting: Experiences at WFO Forth Worth TX. Preprints, 21th Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, July 31-August 5, Washington, DC, U.S., American Meteorological Society, 8 pp. (2005).Google Scholar
  18. Proctor, D.E.: VHF radio pictures of cloud flashes. J. Geophys. Res., 86, 4061–4071 (1981).Google Scholar
  19. Richard, P.: Data fusion concepts for storm nowcasting. Preprints, 17th Intl. Lightning Detection Conf., October 16–18, Tucson, Arizona, U.S., Vaisala, (2002).Google Scholar
  20. Rhodes, C.T., Shao, X.M., Krehbiel, P.R., Thomas, R.J., Hayenga, C.O.: Observations of lightning phenomena using radio interferometry. J. Geophys. Res., 99, 13059–13082 (1994).CrossRefGoogle Scholar
  21. Shao, X.M., Krehbiel, P.R.: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101, 26641–26668 (1996).CrossRefGoogle Scholar
  22. Thomas, R.J., Krehbiel, P.R., Rison, W., Hunyady, S.J., Winn, W.P., Hamlin, T., Harlin, J.: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, doi:10.1029/2004JD004549 (2004).Google Scholar
  23. Uman, M.A.: The lightning discharge. Academic Press, San Diego, 377 pp. (1987).Google Scholar
  24. Weber, M.E., E.R. Williams, M.M. Wolfson, and S.J. Goodman, 1998: An assessment of the operational utility of a GOES lightning mapping sensor. Project Rept. NOAA-18, Lincoln Lab., MIT, Lexington, Mass, 108 pp.Google Scholar
  25. Weidman, C.D., Krider, E.P., Uman, M.A.: Lightning amplitude spectra in the interval from 100 kHz to 20 MHz. Geophys. Res. Lett., 8, 931–934 (1981).CrossRefGoogle Scholar
  26. Wiens, K.C., Rutledge, S.A., Tessendorf, S.A.: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177 (2005).CrossRefGoogle Scholar
  27. Williams, E., Boldi, B., Matlin, A., Weber, M., Hodanish, S., Sharp, D., Goodman, S., Raghavan, R., Buechler, D.: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245–265 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jean-Yves Lojou
    • 1
  • Martin J. Murphy
  • Ronald L. Holle
  • Nicholas W.S. Demetriades
  1. 1.Vaisala Inc Tucson OperationsTucsonUS

Personalised recommendations