Skip to main content

Analog Wavelet Filters: The Need for Approximation

  • Chapter
Ultra Low-Power Biomedical Signal Processing

From its definition, we stated that the implementation of the wavelet transform is based on the design of a bandpass filter that presents an impulse response equal to the desired wavelet base. In order to obtain a synthesizable transfer function of a particular wavelet filter, mathematical approximation techniques are required. In Chapter 4, we present several methods to obtain good approximations in the time domain of wavelet bases functions. One important objective of the introduced approaches is that the resulting approximated function should be rational and stable in the Laplace domain. This entails that the approximating function leads to a physically realizable network. Nevertheless, due to limitations in chip area, power consumption and coefficient matching, there is a trade-off between the approximation accuracy versus the order of the filter to be implemented. Thus, the design challenge is to obtain a low-order system while preserving a good approximation to the intended function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Su, Time Domain Synthesis of Linear Networks, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  2. H. Kamada and N. Aoshima, Analog Gabor transform filter with complex first order system, in: Proc. SICE, Tokushima, Japan, pp. 925-930, Jul 1997.

    Google Scholar 

  3. N. Aoshima, Analog realization of complex first order system and its application to vowel recognition, in: Proc. SICE, Hokkaido, Japan, pp. 1239-1244, 1995.

    Google Scholar 

  4. S. A. P. Haddad, R. P. M. Houben and W. A. Serdijn, Analog wavelet transform employing dynamic translinear circuits for cardiac signal characterization, in: Proc. ISCAS, Bangkok, Thailand, vol. 1, pp. I-121-124, May 25-28, 2003.

    Google Scholar 

  5. G. A. Baker Jr., Essentials of Pade Approximants, Academic Press, New York, 1975.

    MATH  Google Scholar 

  6. A. Bultheel and M. Van Barel, Pade technoques for model reduction in linear system theory: a survey, J. Comput. Appl. Math., vol. 14, pp. 401-438, 1986.

    Article  MathSciNet  Google Scholar 

  7. S. A. P. Haddad, S. Bagga and W. A. Serdijn, Log-domain wavelet bases, IEEE Transactions on Circuits and Systems – I: Regular Paper, vol. 52, no. 10, pp. 2023-2032, 2005.

    Article  Google Scholar 

  8. S. A. P. Haddad, N. Verwaal, R. Houben and W. A. Serdijn, Optimized dynamic translinear implementation of the Gaussian wavelet transform, in: Proc. IEEE Int. Symp. Circuits and Systems, Vancouver, Canada, vol. 1, pp. 145-148, May 23-26, 2004.

    Google Scholar 

  9. D. Zwillinger, Standard Mathematical Tables and Formulae, 30th edn, CRC Press, Boca Raton, FL, 1996.

    MATH  Google Scholar 

  10. J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, Wavelet approximation for implementation in dynamic translinear circuits, in: Proc. IFAC World Congress 2005, Prague, July 4-8, 2005.

    Google Scholar 

  11. J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, An L 2 -based approach for wavelet approximation, in: Proc. CDC-ECC 2005, Seville, Spain, December 12-15, 2005.

    Google Scholar 

  12. J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, Optimal discrete wavelet design for cardiac signal processing, in: Proc. EMBC 2005, Shanghai, China, September 1-4, 2005.

    Google Scholar 

  13. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  14. J. Leblond and M. Olivi, Weighted H 2 -approximation of transfer functions, Math. Control Signals Syst., vol. 11, pp. 28-39, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. M. Filanovsky and P. N. Matkhanov, Synthesis of time delay networks approximating the pulse response described by an integer power of a sinusoid over its semi-period, Analog Integrated Circuits and Signal Processing, vol. 28, no. 1, pp. 83-90, 2001.

    Article  Google Scholar 

  16. R. Schaumann and M. V. Valkenburg, Design of Analog Filters, Oxford University Press, London, ISBN: 0-19-511877-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro A. P. Haddad .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Haddad, S.A.P., Serdijn, W.A. (2009). Analog Wavelet Filters: The Need for Approximation. In: Ultra Low-Power Biomedical Signal Processing. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9073-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9073-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9072-1

  • Online ISBN: 978-1-4020-9073-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics