Skip to main content

Mathematical Modeling of Immunosenescence: Scenarios, Processes and Limitations

  • Chapter
  • 1806 Accesses

Abstract

Mathematical modeling of immunosenescence is the new area of research emerging at the interface of the immunology, gerontology, and mathematics. In this paper we outline basic variables important for modeling aging immunity. We discuss the role of evolution in shaping pattern of aging in the immune system of modern humans. We investigate mathematical models of postnatal changes in the population of peripheral T-cells, effects of the antigenic load during development on the body growth, and contribution of immunosenescence to the old age increase in the risk of death from respiratory infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arpadi SM, Cuff PA, Kotler DP, Wang J, Bamji M, Lange M, Pierson RN, Matthews DE (2000) Growth velocity, fat-free mass and energy intake are inversely related to viral load in HIVinfected children. J Nutr 130:2498–2502

    PubMed  CAS  Google Scholar 

  • Bjorkander J, Bake B, Hanson LA (1984) Primary hypogammaglobulinaemia: impaired lung function and body growth with delayed diagnosis and inadequate treatment. Eur J Respir Dis 65:529–536

    PubMed  CAS  Google Scholar 

  • Bocharov GA, Romanyukha AA (1994) Mathematical model of antiviral immune response III. Influenza A virus infection. J Theor Biol 167:323–360

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay J W, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  • Dutilh BE, De Boer RJ (2003) Decline in excision circles requires homeostatic renewal or homeostatic death of naive T-cells. J Theor Biol 224:351–358

    Article  PubMed  Google Scholar 

  • Epel E S, Blackburn E H, Lin J, Dhabhar F S, Adler N E, Morrow J D, Cawthon R M (2004) Accelerated telomere shortening in response to life stress. PNAS 101:17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Hazenberg MD, Cohen Stuart JWT, Otto SA, Borleffs JCC, Boucher CAB, de Boer RJ, Miedema F, Hamann D (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95:249–255

    PubMed  CAS  Google Scholar 

  • Hazenberg MD, Otto SA, van Rossum AMC, Schrerpbier HJ, de Groot R, Kuijpers TW, Lange JMA, Hamann D, de Boer RJ, Borghans JAM, Miedema F (2004) Establishment of the CD4‫ T-cell pool in healthy children and untreated children infected with HIV-1. Blood 104:3513–3519

    Article  PubMed  CAS  Google Scholar 

  • King CL, Malhotra I, Wamachi A et al (2002) Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. J Immunol 168;356–364

    PubMed  CAS  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? OIKOS 88:7–98

    Article  Google Scholar 

  • Marchant A, Appay V, Van Der Sande M et al (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111:1747–1755

    PubMed  CAS  Google Scholar 

  • Marchuk G (1997) Mathematical modelling of immune response in infectious diseases. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Marchuk GI, Petrov RV, Romanyukha AA, Bocharov GA (1991) Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B. J Theor Biol 151:P1–40

    Google Scholar 

  • McDade TW (2003) Life history theory and the immune system: steps toward a human ecological immunology. Yearbook of physical anthropology 46:100–125

    Article  Google Scholar 

  • Romanyukha AA, Rudnev SG (2001) A variational principle for modeling infection immunity by the example of pneumonia. Math Modelling 13:P65–84 (in Russian)

    Google Scholar 

  • Romanyukha AA, Yashin AI (2003) Age related changes in population of peripheral T-cells: towards a model of immunosenescence. Mech Ageing Dev 124:P433–443

    Article  PubMed  Google Scholar 

  • Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescense measurements in granulocytes and T-lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T-cells in early childhood. J Exp Med 190:157–167

    Article  PubMed  CAS  Google Scholar 

  • Sannikova TE (2007) Analysis of infectious mortality by means of the individualized risk model. ECMTB05 conference proceedings “Mathematical modeling of biological systems, volume II”, A Deutsch et al (ed) Birkhäuser, Boston, pp 169–181

    Google Scholar 

  • Sannikova TE, Rudnev SG, Romanyukha AA, Yashin AI (2004) Immune system aging may be affected by HIV infection: mathematical model of immunosenescence. Russ J Numer Anal Math Modelling 19:315–329

    Article  Google Scholar 

  • Segerstrom S C, Miller G E (2004) Psychological stress and the human immune system: a metaanalytic study of 30 years of inquiry. Psychol Bull 130:601–630

    Article  PubMed  Google Scholar 

  • Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575

    Article  PubMed  CAS  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  Google Scholar 

  • Unutmaz D, Pileri P, Abrignani S (1994) Antigen-independent activation of naive and memory resting T-cells by a cytokine combination. J Exp Med 180:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 32:1–277

    Article  Google Scholar 

  • West JB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  PubMed  Google Scholar 

  • Ye P, Kirschner DE (2002) Reevaluation of T-cell receptor excision circles as a measure of human recent thymic emigrants. J Immunol 169:4968–4979

    Google Scholar 

  • Zeichner SL. Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J, Goodenow M, Biggar R, Dimitrov D (1999) Rapid telomere shortening in children. Blood 93:2824–2830

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Romanyukha, A.A., Rudnev, S.G., Sannikova, T.A., Yashin, A.I. (2009). Mathematical Modeling of Immunosenescence: Scenarios, Processes and Limitations. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_8

Download citation

Publish with us

Policies and ethics