Skip to main content

Mitochondria and Immunosenescence

  • Chapter

The immune system undergoes age-associated changes, that affect its response to infections and cancer, and contributes to the organism’s aging and its associated pathologies. An eminent hypothesis to explain the aging process, most supported by experimental data, is the mitochondrial free radical theory. Evidence is accumulating, linking mitochondrial oxidative damage and apoptosis to immunosenescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Lesnefsky EJ, Hoppel CL (2006) Oxidative phosphorylation and aging. Ageing Res Rev. 5(4):402–433

    Article  PubMed  CAS  Google Scholar 

  • Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Davis RE, Parker WD (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40(4):663–671

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AH (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44(2):177–186

    Article  PubMed  CAS  Google Scholar 

  • Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y (1992) Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 4(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59(10):1541–1550

    Article  PubMed  Google Scholar 

  • Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem. 80(1):91–100

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet. 368(9529):70–82

    Article  PubMed  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J. 341(2):233–249

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Fato R, Genova ML, Solaini G (2006) New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 8(3-4):417–437

    Article  PubMed  CAS  Google Scholar 

  • Cavazzoni M, Barogi S, Baracca A, Parenti Castelli G, Lenaz G (1999) The effect of aging and an oxidative stress on peroxide levels and the mitochondrial membrane potential in isolated rat hepatocytes. FEBS Lett 449(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2):312–318

    PubMed  CAS  Google Scholar 

  • Fraker PJ, Lill-Elghanian DA (2004) The many roles of apoptosis in immunity as modified by aging and nutritional status. J Nutr Health Aging 8(1):56–63

    PubMed  CAS  Google Scholar 

  • Sohal R, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8(3–4):582–599

    Google Scholar 

  • Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T (1996) Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226(2):369–377

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    Article  PubMed  CAS  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911

    Article  PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell. 125(7):1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Beregi E, Regius O (1983) Relationship of mitochondrial damage in human lymphocytes and age. Aktuelle Gerontol 13(6):226–228

    PubMed  CAS  Google Scholar 

  • Murasko DM, Weiner P, Kaye D (1987) Decline in mitogen induced proliferation of lymphocytes with increasing age. Clin Exp Immunol 70(2):440–448

    PubMed  CAS  Google Scholar 

  • Chaudhri G, Clark IA, Hunt NH, Cowden WB, Ceredig R (1986) Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J Immunol 137(8):2646–2652

    PubMed  CAS  Google Scholar 

  • Verity MA, Tam CF, Cheung MK, Mock DC, Walford RL (1983) Delayed phytohemagglutinin- stimulated production of adenosine triphosphate by aged human lymphocytes: possible relation to mitochondrial dysfunction. Mech Ageing Dev 23(1):53–65

    Article  PubMed  CAS  Google Scholar 

  • Weindruch RH, Cheung MK, Verity MA, Walford RL (1980) Modification of mitochondrial respiration by aging and dietary restriction. Mech Ageing Dev 12(4):375–392

    Article  PubMed  CAS  Google Scholar 

  • Witkowski J, Micklem HS (1985) Decreased membrane potential of T lymphocytes in ageing mice: flow cytometric studies with a carbocyanine dye. Immunology 56(2):307–313

    PubMed  CAS  Google Scholar 

  • Leprat P, Ratinaud MH, Julien R (1990) A new method for testing cell ageing using two mitochondria specific fluorescent probes. Mech Ageing Dev 52(2–3):149–167

    Article  PubMed  CAS  Google Scholar 

  • Pieri C, Recchioni R, Moroni F (1993) Age-dependent modifications of mitochondrial transmembrane potential and mass in rat splenic lymphocytes during proliferation. Mech Ageing Dev 70(3):201–212

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H, Wu S (1997) Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem Biophys Res Commun 240(1):68–74

    Article  PubMed  CAS  Google Scholar 

  • Tsai K, Hsu TG, Lu FJ, Hsu CF, Liu TY, Kong CW (2001) Age-related changes in the mitochondrial depolarization induced by oxidative injury in human peripheral blood leukocytes. Free Radic Res 35(4):395–403

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Adibzadeh M, Solana R, Beckman I (1997) The T cell in the ageing individual. Mech Ageing Dev 93(1–3):35–45

    Article  PubMed  CAS  Google Scholar 

  • Sulger J, Dumais-Huber C, Zerfass R, Henn FA, Aldenhoff JB (1999 Mar) The calcium response of human T lymphocytes is decreased in aging but increased in Alzheimer’s dementia. Biol Psychiatry 45(6):737–742

    Article  PubMed  CAS  Google Scholar 

  • Mather MW, Rottenberg H (2002) The inhibition of calcium signaling in T lymphocytes from old mice results from enhanced activation of the mitochondrial permeability transition pore. Mech Ageing Dev 123(6):707–724

    Article  PubMed  CAS  Google Scholar 

  • Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci U S A 96(24):13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Ayub K, Laffafian I, Dewitt S, Hallett MB (2004) Ca influx shutdown in neutrophils induced by Fas (CD95) cross-linking. Immunology 112(3):454–460

    Article  PubMed  CAS  Google Scholar 

  • Ayub K, Hallett MB (2004) Signalling shutdown strategies in aging immune cells. Aging Cell 3(4):145–149

    Article  PubMed  CAS  Google Scholar 

  • Drouet M, Lauthier F, Charmes JP, Sauvage P, Ratinaud MH (1999) Age-associated changes in mitochondrial parameters on peripheral human lymphocytes. Exp Gerontol. 34(7):843–852

    Article  PubMed  CAS  Google Scholar 

  • Sandhu SK, Kaur G (2003) Mitochondrial electron transport chain complexes in aging rat brain and lymphocytes. Biogerontology 4(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Zamzami NP, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181(5):1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Petit PX, LeCoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML (1995) Alterations in mitochondrial structure, function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 130(1):157–567

    Article  PubMed  CAS  Google Scholar 

  • Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G (1996) Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157(11):4830–4836

    PubMed  CAS  Google Scholar 

  • Arnold R, Brenner D, Becker M, Frey CR, Krammer PH, (2006) How T lymphocytes switch between life and death. Eur J Immunol 36(7):1654–1658

    Article  PubMed  CAS  Google Scholar 

  • Spaulding C, Guo W, Effros RB, et al. (1999) Resistance to apoptosis in human CD8+ T-cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 34(5):633–644

    Article  PubMed  CAS  Google Scholar 

  • Monti D, Salvioli S, Capri M, Malorni W, Straface E, Cossarizza A, Botti B, Piacentini M, Baggio G, Barbi C, Valensin S, Bonafe M, Franceschi C (2000) Decreased susceptibility to oxidative stress-induced apoptosis of peripheral blood mononuclear cells from healthy elderly, centenarians. Mech Ageing Dev 121(1–3):239–250

    PubMed  CAS  Google Scholar 

  • Gupta S (2000) Molecular and biochemical pathways of apoptosis in lymphocytes from aged humans. Vaccine 18(16):1596–1601

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal S, Gupta S (1998) Increased apoptosis of T-cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, Bax J Immunol 160(4):1627–1637

    PubMed  CAS  Google Scholar 

  • Gupta S, Gollapudi S (2006) Molecular mechanisms of TNF-alpha-induced apoptosis in naive, memory T cell subsets. Autoimmun Rev 5(4):264–268

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Nel AE (2005) The role of phase II antioxidant enzymes in protecting memory T-cells from spontaneous apoptosis in young and old mice. J Immunol 175(5):2948–2959

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beckerman, P., Ben Yehuda, A. (2009). Mitochondria and Immunosenescence. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_37

Download citation

Publish with us

Policies and ethics