Skip to main content

Role of TLR Polymorphisms in Immunosenescence

  • Chapter
Handbook on Immunosenescence

Abstract

Innate immunity provides a first line of host defense against infection through microbial recognition and killing while simultaneously activating a clonotypic immune response. Toll-like receptors (TLRs) are principal mediators of rapid microbial recognition and function mainly by detection of pathogen-associated molecular patterns (PAMPs) that do not exist in the host. The different members of TLRs recognize several PAMPs, such as peptidoglycan for TLR2, lipopolysaccharide (LPS) for TLR4, flagellin for TLR5, and CpGDNA-repeats for TLR9. Several endogenous ligands of various TLRs have been also identified in the host. In this chapter, we describe the involvement of TLR-4 polymorphisms in immunosenescence, and in particular in age-related diseases, suggesting the crucial role of molecules of innate immunity on these diseases pathophysiology. Hence, we observed that proinflammatory alleles may be related to unsuccessful aging as atherosclerosis and Alzheimer’s disease; reciprocally, controlling inflammatory status by antiinflammatory alleles may allow to better attain successful aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capri M, Salvioli S, Sevini F, et al (2006) The genetics of human longevity. Ann N Y Acad Sci 1067:252–263

    Article  PubMed  CAS  Google Scholar 

  2. Candore G, Colonna-Romano G, Balistreri CR, et al (2006) Biology of longevity: role of the innate immune system. Rejuvenation Res 9:143–148

    Article  PubMed  CAS  Google Scholar 

  3. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  4. Uematsu S, Akira S (2006) PRRs in pathogen recognition. Cent Eur J Biol 1: 299–331

    Article  CAS  Google Scholar 

  5. Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84:712–725

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto C, Hudson KL, Anderson KV (1988) The toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophilatoll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  8. Means TK, Golenbock DT, Fenton MJ (2000) The biology of toll-like receptors. Cyt Growth Fact Rev 11:219–232

    Article  CAS  Google Scholar 

  9. Yoshimura A, Lien E, Ingalls RR et al (1999) Cutting edge. Recognition of Gram-positive bacterial cell wall componentsby the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  10. Qureshi ST, Lariviere L, Leveque G et al (1999) Endotoxin-tolerant mice have mutations in the TLR4 gene. J Exp Med 89:615–625

    Article  Google Scholar 

  11. Hayashi F, Smith KD, Ozinsky A, et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  12. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  13. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519

    Article  PubMed  CAS  Google Scholar 

  14. Beutler B (2005) The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57:385–392

    Article  PubMed  CAS  Google Scholar 

  15. Smirnova I, Poltorak A, Chan EKL et al (2000) Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4). Genome Biol 1:1–10

    Article  Google Scholar 

  16. Biswas C, Mandal C (1999) The role of amoebocytes in endotoxinmediated coagulation in the innate immunity of Achatina fulica snails. Scand J Immunol 49:131–138

    Article  PubMed  CAS  Google Scholar 

  17. Iwanaga S (2002) The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14:87–95

    Article  PubMed  CAS  Google Scholar 

  18. Smirnova I, Poltorak A, Chan EK et al (2000) Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol 1:1–10

    Article  Google Scholar 

  19. Hajjar AM, Ernst RK, Tsai JH et al (2002) Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3:354–359

    Article  PubMed  CAS  Google Scholar 

  20. O’Neill LA, Dinarello CA (2000) The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today 21:206–209

    Article  PubMed  CAS  Google Scholar 

  21. Akira S, Takeda K, Kaisho T (2001) Toll like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  22. Reis e Sousa C (2001) Dendritic cells as sensors of infection. Immunity 14:495–498

    Article  PubMed  CAS  Google Scholar 

  23. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone away: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  PubMed  CAS  Google Scholar 

  24. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  PubMed  CAS  Google Scholar 

  25. Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164

    PubMed  Google Scholar 

  26. Lehnardt S, Massillon L, Follett P, et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519

    Article  PubMed  CAS  Google Scholar 

  27. Arbour NC, Lorenz, E, Schutte BC, et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  PubMed  CAS  Google Scholar 

  28. Kiechl S, Lorenz E, Reindl M, et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347:185–192

    Article  PubMed  CAS  Google Scholar 

  29. Faure E, Thomas L, Xu H et al (2001) Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF kappa B activation. J Immunol 166:2018–2024

    PubMed  CAS  Google Scholar 

  30. Vink A, de Kleijn DP, Pasterkamp G (2004) Functional role for toll-like receptors in atherosclerosis and arterial remodeling. Curr Opin Lipidol 15:515–521

    Article  PubMed  CAS  Google Scholar 

  31. Pasterkamp G, Van Keulen JK, De Kleijn DP (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest 34:328–334

    Article  PubMed  CAS  Google Scholar 

  32. Bjorkbacka H (2006) Multiple roles of Toll-like receptor signaling in atherosclerosis. Curr Opin Lipidol 17:527–533

    Article  PubMed  CAS  Google Scholar 

  33. Mullick AE, Tobias PS, Curtiss LK (2006) Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol Res 34:193–209

    Article  PubMed  CAS  Google Scholar 

  34. Michelsen KS, Doherty TM, Shah PK, et al (2004) TLR signaling: an emerging bridge from innate immunity to atherogenesis. J Immunol 173:5901–5907

    PubMed  CAS  Google Scholar 

  35. Michelsen KS, Doherty TM, Shah PK, et al (2004) Role of Toll-like receptors in atherosclerosis. Circ Res 95:e96–e97

    PubMed  CAS  Google Scholar 

  36. Stoll LL, Denning GM, Weintraub NL (2006) Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des 12:4229–4245

    Article  PubMed  CAS  Google Scholar 

  37. Vasto S, Candore G, Balistreri CR, et al (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128:83–91

    Article  PubMed  CAS  Google Scholar 

  38. Ameziane N, Beillat T, Verpillat P, et al (2003) Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 23:e61–e64

    Article  PubMed  CAS  Google Scholar 

  39. Balistreri CR, Candore G, Colonna-Romano G, et al (2004) Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 292:2339–2340

    Article  PubMed  CAS  Google Scholar 

  40. Edfeldt K, Bennet AM, Eriksson P, et al (2004) Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart 25:1447–1453

    Article  CAS  Google Scholar 

  41. Zee RY, Hegener HH, Gould J, et al (2005) Toll-like receptor 4 Asp299Gly gene polymorphism and risk of atherothrombosis. Stroke 36:154–157

    Article  PubMed  CAS  Google Scholar 

  42. Yang IA, Holloway JW, Ye S (2003) TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 170:187–190

    Article  PubMed  CAS  Google Scholar 

  43. Labrum R, Bevan S, Sitzer M, et al (2007) Toll receptor polymorphisms and carotid artery intima-media thickness. Stroke 38:1179–1184

    Article  PubMed  Google Scholar 

  44. O’Halloran AM, Stanton A, O’Brien E, et al (2006) The impact on coronary artery disease of common polymorphisms known to modulate responses to pathogens. Ann Hum Genet 70:934–945

    Article  PubMed  CAS  Google Scholar 

  45. Vainas T, Stassen FR, Bruggeman CA, et al (2006) Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. J Vasc Surg 44:326–332

    Article  PubMed  Google Scholar 

  46. Nebel A, Flachsbart F, Schafer A, et al (2007) Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. Mech Ageing Dev 128:409–411

    Article  PubMed  CAS  Google Scholar 

  47. Lehnardt S, Massillon L, Follett P, et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519

    Article  PubMed  CAS  Google Scholar 

  48. Lotz M, Ebert S, Esselmann H, et al (2005) Amyloid beta peptide 1-40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem 94:289–298

    Article  PubMed  CAS  Google Scholar 

  49. Akiyama S, Barger S, Barnum B, et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  50. Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8

    Article  PubMed  CAS  Google Scholar 

  51. Fassbender K, Walter S, Kuhl S, et al (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18:203–215

    PubMed  CAS  Google Scholar 

  52. Eikelenboom P, Bate C, Van Gool WA, et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239

    Article  PubMed  CAS  Google Scholar 

  53. Bsibsi M, Ravid R, Gveric D, et al (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  54. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147 (Suppl 1):S232–S240

    CAS  Google Scholar 

  55. Finch CE, Morgan TE (2007) Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Curr Alzheimer Res 4:185–189

    Article  PubMed  CAS  Google Scholar 

  56. Candore G, Balistreri CR, Grimaldi MP, et al (2007) Polymorphisms of pro-inflammatory genes and Alzheimer’s disease risk: a pharmacogenomic approach. Mech Ageing Dev 128:67–75

    Article  PubMed  CAS  Google Scholar 

  57. Minoretti P, Gazzaruso C, Vito CD, et al (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391:147–149

    Article  PubMed  CAS  Google Scholar 

  58. Caruso C, Lio D, Cavallone L, Franceschi C. (2004) Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028:1–13

    Article  PubMed  CAS  Google Scholar 

  59. Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SI et al (2007) Assessment of the tolllike receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer 7:70

    Article  PubMed  CAS  Google Scholar 

  60. Kato I, Canzian F, Plummer M et al (2007) Polymorphisms in genes related to bacterial lipopolysaccharide/peptidoglycan signaling and gastric precancerous lesions in a population at high risk for gastric cancer. Dig Dis Sci 52:254–261

    Article  PubMed  CAS  Google Scholar 

  61. Landi S, Gemignani F, Bottari F (2006) Polymorphisms within inflammatory genes and colorectal cancer. J Negat Results Biomed 5:15

    Article  PubMed  Google Scholar 

  62. Nieters A, Beckmann L, Deeg E et al (2006) Gene polymorphisms in Toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun 7:615–624

    Article  PubMed  CAS  Google Scholar 

  63. Franceschi C, Motta L, Valensin S et al (2000) Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging (Milano) 12:77–84

    CAS  Google Scholar 

  64. Evert J, Lawler E, Bogan H et al (2003) Morbidity profiles of centenarians: survivors,delayers, and escapers. J Gerontol A Biol Sci Med Sci 58:232–237

    PubMed  Google Scholar 

  65. Gondo Y, Hirose N, Arai Y et al (2006) Functional status of centenarians in Tokyo, Japan:developing better phenotypes of exceptional longevity. J Gerontol A Biol Sci Med Sci 61:305–310.

    PubMed  Google Scholar 

  66. De Benedictis G, Franceschi C (2006) The unusual genetics of human longevity. Sci Aging Knowledge Environ 10:pe20

    Article  Google Scholar 

  67. Franceschi C, Bonafe M (2003) Centenarians as a model for healthy aging. Biochem Soc Trans 31:457–461

    Article  PubMed  CAS  Google Scholar 

  68. Perls T, Terry D (2003) Genetics of exceptional longevity. Exp Gerontol 38:725–730

    Article  PubMed  Google Scholar 

  69. Terry DF, Wilcox M, McCormick MA et al (2003) Cardiovascular advantages among the offspring of centenarians. J Gerontol A Biol Sci Med Sci 58:425–431

    Google Scholar 

  70. Lio D, Candore G, Crivello A, et al. (2004) Opposite effects of interleukin 10 common gene polymorphisms in cardiovascular diseases and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. J Med Genet 41:790–794

    Article  PubMed  CAS  Google Scholar 

  71. Nuzzo D, Vasto S, Balistreri CR, et al (2006) Role of proinflammatory alleles in longevity and atherosclerosis: results of studies performed on -1562C/T MMP-9 in centenarians and myocardial infarction patients from Sicily. Ann N Y Acad Sci.1089:496–501

    Article  PubMed  Google Scholar 

  72. Candore G, Balistreri CR, Grimaldi MP et al (2006) Opposite role of pro-inflammatory alleles in acute myocardial infarction and longevity: results of studies performed in a Sicilian population. Ann N Y Acad Sci 1067:270–275

    Article  PubMed  CAS  Google Scholar 

  73. Capri M, Salvioli S, Monti D et al (2007) Human longevity within an evolutionary perspective: The peculiar paradigm of a post-reproductive genetics. Exp Gerontol 43:53–60

    Article  PubMed  Google Scholar 

  74. Balistreri CR, Candore G, Lio D, Colonna-Romano G et al (2005) Role of TLR4 receptor polymorphisms in Boutonneuse fever. Int J Immunopathol Pharmacol 18:655–660

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rita Balistreri, C. et al. (2009). Role of TLR Polymorphisms in Immunosenescence. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_34

Download citation

Publish with us

Policies and ethics