The Effects of Age on CD1d-restricted NKT-cells and Their Contribution to Peripheral T-cell Immunity

  • Douglas E. Faunce
  • Jessica L. Palmer

Natural Killer T (NKT) cells are innate lymphocytes known for their roles in regulation of immune responses in cancer, autoimmunity, bacterial and viral infections, and the induction of immunologic tolerance [ 1–4 ]. Recently, our laboratory and others have also identified crucial roles for NKT-cells in the regulation of the host response to injury and sepsis [5–7]. As we will discuss further in this chapter, NKT-cells are now widely accepted as critical players in the initiation of maintenance of host defense, as they are uniquely poised to modulate multiple aspects of protective immunity. NKT-cells fill this position via their ability to rapidly produce significant quantities of immunomodulatory cytokines very early during the course of the immune response and can thereby influence the outcome of both innate and adaptive immune processes.

Keywords

Zinc Estrogen Oncol Interferon Arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joyce S (2001) CD1d and natural T cells: how their properties jump-start the immune system. Cell Mol Life Sci 5:442CrossRefGoogle Scholar
  2. 2.
    Bendelac A, MN Rivera, SH Park, JH Roark (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535PubMedCrossRefGoogle Scholar
  3. 3.
    Bendelac A (1995) Mouse NK1 + T cells. Curr Opin Immunol 7:367PubMedCrossRefGoogle Scholar
  4. 4.
    Stein-Streilein J, KH Sonoda, D Faunce, J Zhang-Hoover (2000) Regulation of adaptive immune responses by innate cells expressing NK markers and antigen-transporting macrophages. J Leukocyte Biol 67:488PubMedGoogle Scholar
  5. 5.
    Rhee RJ, S CArlton, JL Lomas, C Lane, L Brossay, WG Cioffi, A Ayala (2003) Inhibition of CD1d activation suppresses septic mortality: a role for NK-T cells in septic immune dysfunction. J Surg Res 115:74PubMedCrossRefGoogle Scholar
  6. 6.
    Faunce DE, JL Palmer, KK Paskowicz, PL Witte, EJ Kovacs (2005) CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity. J Immunol 175:3102PubMedGoogle Scholar
  7. 7.
    Palmer JL, JM Tulley, EJ Kovacs, RL Gamelli, M Taniguchi, DE Faunce (2006) Injury-induced suppression of effector T cell immunity requires CD1d-positive APCs and CD1d-restricted NKT cells. J Immunol 177:92PubMedGoogle Scholar
  8. 8.
    Bendelac A, PB Savage, L Teyton (2007) The biology of NKT cells. Ann Rev Immunol 25:297CrossRefGoogle Scholar
  9. 9.
    Savage PB, L Teyton, A Bendelac (2006) Glycolipids for natural killer T cells. Chem Soc Rev 35:771PubMedCrossRefGoogle Scholar
  10. 10.
    Mattner J, KL Debord, N Ismail, RD Goff, C Cantu III, D Zhou, P Saint-Mezard, V Wang, Y Gao, N Yin, K Hoebe, O Schneewind, D Walker, B Beutler, L Teyton, PB Savage, A Bendelac (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525PubMedCrossRefGoogle Scholar
  11. 11.
    Gumperz JE, S Miyake, T Yamamura, MB Brenner (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuda JL, OV Naidenko, L Gapin, T Nakayama, C-R Wang, Y Koezuka, M Kronenberg (2000). Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetrameters. J Exp Med 192:741PubMedCrossRefGoogle Scholar
  13. 13.
    Faunce DE, KH Sonoda, J Stein-Streilein (2001) MIP-2 recruits NKT cells to the spleen during tolerance induction. J Immunol 166:313PubMedGoogle Scholar
  14. 14.
    Geissmann F, TO Cameron, S Sidobre, N Manlongat, M Kronenberg, MJ Briskin, ML Dustin, DR. Littman 2005 Intravascular immune surveillance by CXCR6 +NKT cells patrolling liver sinusoids. Plos Biology 3:e113.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim CH (2002) Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among Va24+VB11+ NKT cell subsets with distinct cytokine-producing capacity. Blood 100:11PubMedCrossRefGoogle Scholar
  16. 16.
    Benlagha K, A Bendelac (2000) CD1d-restricted mouse V alpha 14 and human V alpha 24 T cells; lymphocytes of innate immunity. Semin Immunol 12:537PubMedCrossRefGoogle Scholar
  17. 17.
    Brossay L, M Kronenberg (1999) Highly conserved antigen-presenting function of CD1d molecules. Immunogenetics 50:146PubMedCrossRefGoogle Scholar
  18. 18.
    Prigozy TI, O Naidenko, P Qasba, D Elewaut, L Brossay, A Khurana, T Natori, Y Koezuka, A Kulkarni, M Kronenberg (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291:664PubMedCrossRefGoogle Scholar
  19. 19.
    Bendelac A, O Lantz, ME Quimby, JW Yewdell, JR Bennink, RR Brutkiewicz (1995) CD1 recognition by mouse NK1 + T lymphocytes. Science 268:863PubMedCrossRefGoogle Scholar
  20. 20.
    Bendelac A (1995) CD1: presenting unusual antigens to unusual T lymphocytes. Science 269:185PubMedCrossRefGoogle Scholar
  21. 21.
    Bendelac A, N Killeen, DR Littman, RH Scwartz (1994) A subset of CD4+ thymocytes selected by MHC class I molecule. Science 263:1774PubMedCrossRefGoogle Scholar
  22. 22.
    Exley MA, J Garcia, SP Balk, S Porcelli (1997) Requirements for CD1d recognition by human invariant Valpha24 +CD4-CD8- T cells. J Exp Med 186:109PubMedCrossRefGoogle Scholar
  23. 23.
    Kronenberg M, O Naidenko, F Koning (2001). Right on target: novel approaches for the direct visualization of CD1-specific T cell responses. Proc Nat Adac Sci U S A 98:2950CrossRefGoogle Scholar
  24. 24.
    Naidenko OV, JK Maher, WA Ernst, T Sakai, RL Modlin, M Kronenberg (1999) Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J Exp Med 190:1069PubMedCrossRefGoogle Scholar
  25. 25.
    Sidobre S, OV Naidenko, BC Sim, NR Gascoigne, KC Garcia, M Kronenberg (2002) The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 169:1340PubMedGoogle Scholar
  26. 26.
    Morita M, K Motoki, K Akimoto, T Natori, T Sakai, E Sawa, K Yamaji, Y Koezuka, E Kobayashi, H Fukushima (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176PubMedCrossRefGoogle Scholar
  27. 27.
    Sakai T, OV Naidenko, H Iijima, M Kronenberg, Y Koezuka (1999) Syntheses of biotinylated alpha-galactosylceramides and their effects on the immune system and CD1 molecules. J Med Chem 42:1836PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi E, K Motoki, T Uchida, H Fukushima, Y Koezuka (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7:529PubMedGoogle Scholar
  29. 29.
    Kawakami K, Y Kinjo, S Yara, K Uezu, Y Koguchi, M Tohyama, M Azuma, K Takeda, S Akira, A Saito (2001) Enhanced gamma interferon production through activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide in interleukin-18-deficient mice with systemic cryptococcosis. Infect Immun 69:6643.PubMedCrossRefGoogle Scholar
  30. 30.
    Kawakami K, Y Kinjo, S Yara, Y Koguchi, UT Nakayama, M Taniguchi, A Saito (2001) Activation of Valpha14 +natural killer T cells by alpha-glactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun 69:213PubMedCrossRefGoogle Scholar
  31. 31.
    Wu D, G Xing, MA Poles, A Horowitz, Y Kinjo, B Sullivan, V Bodmer-Narkevitch, O Plettenburg, M Kronenberg, M Tsuji, DD Ho, C Wong (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci U S A 102:1351PubMedCrossRefGoogle Scholar
  32. 32.
    Kinjo Y, D Wu, G Kim, G-W Xing, MA Poles, DD Ho, M Tsuji, K Kawahara, C-H Wong, M Kronenberg (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. pp 520Google Scholar
  33. 33.
    Fischer K, E Scotet, M Niemeyer, H Koebernick, J Zerrahn, S Maillet, R Hurwitz, M Kursar, M Bonneville, SH Kaufmann, UE Schaible (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101:10685PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou D, J Mattner, C Cantu, N Schrantz, N Yin, Y Gao, Y Sagiv, K Hudspeth, Y Wu, T Yamashita, S Teneberg, D Wang, RL Proia, SB Levery, PB Savage, L Teyton, A Bendelac (2004) Lysosomal glycoshingolipid recognition by NKT cells. Science 306:1786PubMedCrossRefGoogle Scholar
  35. 35.
    Inui T, R Nakagawa, S Ohkura, Y Habu, Y Koike, K Motoki, N Kuranaga, M Fukasawa, N Shinomiya, S Seki (2002) Age-associated augmentation of the synthetic ligand- mediated function of mouse NK1.1 ag(+) T cells: their cytokine production and hepatotoxicity in vivo and in vitro. J Immunol 169:6127PubMedGoogle Scholar
  36. 36.
    Mocchegiani E, M Malavolta (2004) NK and NKT cell functions in immunosenescence. pp 177Google Scholar
  37. 37.
    Berzins SP, FW McNab, CM Jones, MJ Smyth, DI Godfrey (2006) Long-term retention of mature NK1.1+ NKT cells in the thymus. J Immunol 176:4059PubMedGoogle Scholar
  38. 38.
    Poynter ME, HH Mu, XP Chen, RA Daynes (1997) Activation of NK1.1+ T cells in vitro and their possible role in age-associated changes in inducible IL-4 production. Cell Immunol 179:22PubMedCrossRefGoogle Scholar
  39. 39.
    Ishimoto Y, C Tomiyama-Miyaji, H Watanabe, H Yokoyama, K Ebe, S Tsubata, Y Aoyagi, T Abo (2004) Age-dependent variation in the proportion and number of intestinal lymphocyte subsets, especially natural killer T cells, double-positive CD4+ CD8+ cells and B220+ T cells, in mice. Immunology 113:371PubMedCrossRefGoogle Scholar
  40. 40.
    Tsukahara A, S Seki, T Iiai, T Moroda, H Wantanabe, S Suzuki, T Tada, H Hiraide, K Hatakeyama, T Abo (1997) Mouse liver T cells: their change with aging and in comparison with peripheral T cells. Hepatology 26:301PubMedCrossRefGoogle Scholar
  41. 41.
    DelaRosa O, R Tarazona, JG Casado, C Alonso, B Ostos, J Pena, R Solana (2002) Valpha24+ NKT cells are decreased in elderly humans. Exp Gerontol 37:213PubMedCrossRefGoogle Scholar
  42. 42.
    Plackett TP, EM Schilling, DE Faunce, MA Choudhry, PL Witte, EJ Kovacs (2003) Aging enhances lymphocyte cytokine defects after injury. FASEB J 17:688PubMedGoogle Scholar
  43. 43.
    Kovacs EJ, TP Plackett, PL Witte (2004) Estrogen replacement, aging, and cell-mediated immunity after injury. J Leukocyte Biol 76:36PubMedCrossRefGoogle Scholar
  44. 44.
    Haynes LES (2004) Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 172:5194PubMedGoogle Scholar
  45. 45.
    Eaton SM, EM Burns, K Kusser, TD Randall, L Haynes (2004) Age-related defects in CD4 T cellcognate helper function lead to reductions in humoral immune responses. J Exp Med 200:1616CrossRefGoogle Scholar
  46. 46.
    Haynes L, SM Eaton, SL Swain (2000) The defects in effector generation associated with aging can be reversed by addition of IL-2 but not other related gamma(c)-receptor binding cytokines. Vaccine 18:1649PubMedCrossRefGoogle Scholar
  47. 47.
    Dubey DP, Z Husain, E Levitan, D Zurakowski, N Mirza, S Younes, C Coronell, D Yunis, EJ Yunis (2000) The MHC influences NK and NKT cell functions associated with immune abnormalities and lifespan. Mech Ageing Dev 113:117PubMedCrossRefGoogle Scholar
  48. 48.
    Mocchegiani E, L Santarelli, L Costarelli, C Cipriano, E Muti, R Giacconi, M Malavolta (2006) Plasticity of neuroendocrine-thymus interactions during ontogeny and ageing: role of zinc and arginine. Ageing Res Rev 5:281PubMedCrossRefGoogle Scholar
  49. 49.
    Mocchegiani E, R Giaccni, C Cipriano, N Gasparini, G Bernardini, M Malavolta, M Menegazzi, E Cavalieri, M Muzzioli, AR Ciampa, H Suzuki (2004) The variations during the circadian cycle of liver CD1d-unrestricted NK1.1+TCR gamma/delta+ cells lead to successful ageing. Role of metallothionein/IL-6/gp130/PARP-1 interplay in very old mice. Exp Gerontol 39:775PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Douglas E. Faunce
    • 1
  • Jessica L. Palmer
    • 1
  1. 1.Loyola University Medical CenterMaywoodUSA

Personalised recommendations