Skip to main content

Lymphocytes Sub-Types and Functions in Centenarians as Models for Successful Ageing

  • Chapter
  • 1789 Accesses

Abstract

Several cell subsets participate to the immune response, and their close interplay is fundamental for the successful elimination of harmful pathogens. In addition, a tight regulation of the immune response has to occur in order to avoid excessive inflammation and potential autoreactivity towards self components. In the last years, the discovery and the characterization of new lymphocytes subsets, including regulatory T (Treg)-cells and Natural Killer T (NKT)-cells allowed a better understanding of how an effector immune response is induced and therefore down-modulated. During the ageing of the immune system, a process termed immunosenescence, these subsets undergo a profound remodelling, both in phenotype and function. In this chapter, we will describe the essential features of lymphocyte populations in centenarians and the differences that occur with unsuccessfully aged people.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franceschi C, Cossarizza A (1995) Introduction: the reshaping of the immune system with age. Int Rev Immunol, 12:1–4s

    Article  PubMed  CAS  Google Scholar 

  2. Allman D, Miller JP (2005) B-cell development and receptor diversity during aging. Curr Opin Immunol, 17:463–467

    PubMed  CAS  Google Scholar 

  3. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol, 5:133–139

    Article  PubMed  CAS  Google Scholar 

  4. Wack A, Cossarizza A, Heltai S, Barbieri D, D’Addato S, Fransceschi C, Dellabona P, Casorati G (1998) Age-related modifications of the human alphabeta T-cell repertoire due to different clonal expansions in the CD4+ and CD8+ subsets. Int Immunol, 10:1281–1288

    Article  PubMed  CAS  Google Scholar 

  5. Crawford J, Eye MK, Cohen HJ (1987) Evaluation of monoclonal gammopathies in the “well” elderly. Am J Med, 82:39–45

    Article  PubMed  CAS  Google Scholar 

  6. Mariotti S, Sansoni P, Barbesino G, Caturegli P, Monti D, Cossarizza A, Giacomelli T, Passeri G, Fagiolo U, Pinchera A, et al (1992) Thyroid and other organ-specific autoantibodies in healthy centenarians. Lancet, 339:1506–1508

    Article  PubMed  CAS  Google Scholar 

  7. Goronzy JJ, Weyand CM (2005) T-cell development and receptor diversity during aging. Curr Opin Immunol, 17:468–475

    PubMed  CAS  Google Scholar 

  8. Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafe M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol, 34:911–921

    Article  PubMed  CAS  Google Scholar 

  9. Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine, 18:1717–1720

    Article  PubMed  CAS  Google Scholar 

  10. Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A (2005) Human immunosenescence: is it infectious? Immunol Rev, 205:257–268

    Article  PubMed  CAS  Google Scholar 

  11. George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today, 17:267–272

    Article  PubMed  CAS  Google Scholar 

  12. Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol, 22:563–575

    Article  PubMed  CAS  Google Scholar 

  13. Terszowski G, Muller SM, Bleul CC, Blum C, Schirmbeck R, Reimann J, Pasquier LD, Amagai T, Boehm T, Rodewald HR (2006) Evidence for a functional second thymus in mice. Science, 312:284–287

    Article  PubMed  CAS  Google Scholar 

  14. Swain S, Clise-Dwyer K, Haynes L (2005) Homeostasis and the age-associated defect of CD4 T-cells. Semin Immunol, 17:370–377

    Article  PubMed  CAS  Google Scholar 

  15. Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T-cells. Nature, 435:598–604

    Article  PubMed  CAS  Google Scholar 

  16. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T-cells in immunological tolerance to self and non-self. Nat Immunol, 6:345–352

    Article  PubMed  CAS  Google Scholar 

  17. von Boehmer H (2005) Mechanisms of suppression by suppressor T-cells. Nat Immunol, 6:338–344

    Article  CAS  Google Scholar 

  18. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol, 24:209–226

    Article  PubMed  CAS  Google Scholar 

  19. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 110:1225–1232

    Article  PubMed  CAS  Google Scholar 

  20. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T-cell-mediated suppression. J Exp Med, 204:1303–1310

    Article  PubMed  CAS  Google Scholar 

  21. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T-cells mediates immune suppression. J Exp Med, 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  22. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, Fazekas de St Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T-cells. J Exp Med, 203:1693–1700

    Article  PubMed  CAS  Google Scholar 

  23. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 203:1701–1711

    Article  PubMed  CAS  Google Scholar 

  24. Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol, 41:339–345

    Article  PubMed  CAS  Google Scholar 

  25. Apostolou I, von Boehmer H (2004) In vivo instruction of suppressor commitment in naïve T-cells. J Exp Med, 199:1401–1408

    Article  PubMed  CAS  Google Scholar 

  26. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T-cell populations by foreign antigen. Nat Immunol, 6:1219–1227

    Article  PubMed  CAS  Google Scholar 

  27. Antonelli A, Rotondi M, Fallahi P, Ferrari SM, Paolicchi A, Romagnani P, Serio M, Ferrannini E (2006) Increase of CXC chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing. Cytokine, 34:32–38

    Article  PubMed  CAS  Google Scholar 

  28. Begley L, Monteleon C, Shah RB, Macdonald JW, Macoska JA (2005) CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4:291–298

    Article  PubMed  CAS  Google Scholar 

  29. Fagiolo U, Cossarizza A, Santacaterina S, Ortolani C, Monti D, Paganelli R, Franceschi C (1992) Increased cytokine production by peripheral blood mononuclear cells from healthy elderly people. Ann N Y Acad Sci, 663:490–493

    Article  PubMed  CAS  Google Scholar 

  30. Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R (1993) Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol, 23:2375–2378

    Article  PubMed  CAS  Google Scholar 

  31. Gerli R, Monti D, Bistoni O, Mazzone AM, Peri G, Cossarizza A, Di Gioacchino M, Cesarotti ME, Doni A, Mantovani A, Franceschi C, Paganelli R (2000) Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech Ageing Dev, 121:37–46

    Article  PubMed  CAS  Google Scholar 

  32. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol, 164:2180–2187

    PubMed  CAS  Google Scholar 

  33. Cossarizza A, Ortolani C, Monti D, Franceschi C (1997) Cytometric analysis of immunosenescence. Cytometry, 27:297–313

    Article  PubMed  CAS  Google Scholar 

  34. Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today, 16:12–16

    Article  PubMed  CAS  Google Scholar 

  35. Paolisso G, Barbieri M, Bonafe M, Franceschi C (2000) Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest, 30:888–894

    Article  PubMed  CAS  Google Scholar 

  36. Cancro MP (2005) B-cells and aging: gauging the interplay of generative, selective, and homeostatic events. Immunol Rev, 205:48–59

    Article  PubMed  CAS  Google Scholar 

  37. Lopes-Carvalho T, Foote J, Kearney JF (2005) Marginal zone B-cells in lymphocyte activation and regulation. Curr Opin Immunol, 17:244–250

    Article  PubMed  CAS  Google Scholar 

  38. Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol, 23:161–196

    Article  PubMed  CAS  Google Scholar 

  39. Boumsell L, Bernard A, Lepage V, Degos L, Lemerle J, Dausset J (1978) Some chronic lymphocytic leukemia cells bearing surface immunoglobulins share determinants with T-cells. Eur J Immunol, 8:900–904

    Article  PubMed  CAS  Google Scholar 

  40. Hayakawa K, Hardy RR, Parks DR, Herzenberg LA (1983) The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med, 157:202–218

    Article  PubMed  CAS  Google Scholar 

  41. Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol, 20:253–300

    Article  PubMed  CAS  Google Scholar 

  42. Maurer D, Holter W, Majdic O, Fischer GF, Knapp W (1990) CD27 expression by a distinct subpopulation of human B-lymphocytes. Eur J Immunol, 20:2679–2684

    Article  PubMed  CAS  Google Scholar 

  43. Maurer D, Fischer GF, Fae I, Majdic O, Stuhlmeier K, Von Jeney N, Holter W, Knapp W (1992) IgM and IgG but not cytokine secretion is restricted to the CD27+ B-lymphocyte subset. J Immunol, 148:3700–3705

    PubMed  CAS  Google Scholar 

  44. Agematsu K (2000) Memory B-cells and CD27. Histol Histopathol, 15:573–576

    PubMed  CAS  Google Scholar 

  45. Agematsu K, Hokibara S, Nagumo H, Komiyama A (2000) CD27: a memory B-cell marker. Immunol Today, 21:204–206

    Article  PubMed  CAS  Google Scholar 

  46. Agematsu K, Kobata T, Sugita K, Freeman GJ, Beckmann MP, Schlossman SF, Morimoto C (1994)_ Role of CD27 in T-cell immune response. Analysis by recombinant soluble CD27. J Immunol, 153:1421–1429

    PubMed  CAS  Google Scholar 

  47. Agematsu K, Nagumo H, Yang FC, Nakazawa T, Fukushima K, Ito S, Sugita K, Mori T, Kobata T, Morimoto C, Komiyama A (1997) B-cell subpopulations separated by CD27 and crucial collaboration of CD27+ B-cells and helper T-cells in immunoglobulin production. Eur J Immunol, 27:2073–2079

    Article  PubMed  CAS  Google Scholar 

  48. Shi Y, Agematsu K, Ochs HD, Sugane K (2003) Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B-cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol, 108:128–137

    Article  PubMed  CAS  Google Scholar 

  49. Paganelli R, Quinti I, Fagiolo U, Cossarizza A, Ortolani C, Guerra E, Sansoni P, Pucillo LP, Scala E, Cozzi E, et al (1992) Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clin Exp Immunol, 90:351–354.

    PubMed  CAS  Google Scholar 

  50. Colonna-Romano G, Aquino A, Bulati M, Di Lorenzo G, Listi F, Vitello S, Lio D, Candore G, Clesi G, Caruso C (2006) Memory B-cell subpopulations in the aged. Rejuvenation Res, 9:149–152

    Article  PubMed  CAS  Google Scholar 

  51. Colonna-Romano G, Bulati M, Aquino A, Scialabba G, Candore G, Lio D, Motta M, Malaguarnera M, Caruso C (2003) B-cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev, 124:389–393

    Article  PubMed  CAS  Google Scholar 

  52. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B-cell. J Immunol, 175:3262–3267

    PubMed  CAS  Google Scholar 

  53. LeMaoult J, Manavalan JS, Dyall R, Szabo P, Nikolic-Zugic J, Weksler ME (1999) Cellular basis of B-cell clonal populations in old mice. J Immunol, 162:6384–6391

    PubMed  CAS  Google Scholar 

  54. Kyle RA, Rajkumar SV (1999) Monoclonal gammopathies of undetermined significance. Hematol Oncol Clin North Am, 13:1181–1202

    Article  PubMed  CAS  Google Scholar 

  55. Merlini G, Farhangi M, Osserman EF (1986) Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin Oncol, 13:350–365

    PubMed  CAS  Google Scholar 

  56. Ghia P, Prato G, Scielzo C, Stella S, Geuna M, Guida G, Caligaris-Cappio F (2004) Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood, 103:2337–2342

    Article  PubMed  CAS  Google Scholar 

  57. Schwab R, Walters CA, Weksler ME (1989) Host defense mechanisms and aging. Semin Oncol, 16:20–27

    PubMed  CAS  Google Scholar 

  58. Rowley MJ, Buchanan H, Mackay IR (1968) Reciprocal change with age in antibody to extrinsic and intrinsic antigens. Lancet, 2:24–26

    Article  PubMed  CAS  Google Scholar 

  59. Hallgren HM, Buckley CE 3rd, Gilbertsen VA, et al (1973) Lymphocyte phytohemagglutinin responsiveness, immunoglobulins and autoantibodies in aging humans. J Immunol, 111:1101–1107

    PubMed  CAS  Google Scholar 

  60. De Greef GE, Van Tol MJ, Van Den Berg JW, Van Staalduinen GJ, Janssen CJ, Radl J, Hijmans W. (1992) Serum immunoglobulin class and IgG subclass levels and the occurrence of homogeneous immunoglobulins during the course of ageing in humans. Mech Ageing Dev, 66:29–44

    Article  PubMed  Google Scholar 

  61. Listi F, Candore G, Modica MA, Russo M, Di Lorenzo G, Esposito-Pellitteri M, Colonna- Romano G, Aquino A, Bulati M, Lio D, Franceschi C, Caruso C (2006) A study of serum immunoglobulin levels in elderly persons that provides new insights into B-cell immunosenescence. Ann N Y Acad Sci, 1089:487–495

    Article  PubMed  CAS  Google Scholar 

  62. Cossarizza A, Ortolani C, Paganelli R Barbieri D, Monti D, Sansoni P, Fagiolo U, Castellani G, Bersani F, Londei M, Franceschi C (1996) CD45 isoforms expression on CD4+ and CD8 +T-cells throughout life, from newborns to centenarians: implications for T-cell memory. Mech Ageing Dev, 86:173–195

    Article  PubMed  CAS  Google Scholar 

  63. Miller RA (1996) The aging immune system: primer and prospectus. Science, 273:70–74

    Article  PubMed  CAS  Google Scholar 

  64. Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28–CD8+ T-cell subset: age-associated expansion and shift from memory to naive phenotype. J Immunol, 162:3327–3335

    PubMed  CAS  Google Scholar 

  65. Okumura M, Fujii Y, Takeuchi Y, Inada K, Nakahara K, Matsuda H (1993) Age-related accumulation of LFA-1high cells in a CD8+CD45RAhigh T-cell population. Eur J Immunol, 23:1057–1063

    Article  PubMed  CAS  Google Scholar 

  66. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 401:708–712

    Article  PubMed  CAS  Google Scholar 

  67. Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of memory T-cell subsets. Curr Opin Immunol, 17:326–332

    Article  PubMed  CAS  Google Scholar 

  68. Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T-cells provides new insights on immunodeficiency in aging. Blood, 95:2860–2868

    PubMed  CAS  Google Scholar 

  69. De Rosa SC, Herzenberg LA, Roederer M (2001) 11–color, 13-parameter flow cytometry: identification of human naive T-cells by phenotype, function, and T-cell receptor diversity. Nat Med, 7:245–248

    Article  PubMed  CAS  Google Scholar 

  70. Lugli E, Pinti M, Nasi M, Troiano L, Ferraresi R, Mussi C, Salvioli G, Patsekin V, Robinson JP, Durante C, Cocchi M, Cossarizza A (2007) Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A, 71:334–344

    PubMed  Google Scholar 

  71. Nasi M, Troiano L, Lugli E, Pinti M, Ferraresi R, Monterastelli E, Mussi C, Salvioli G, Franceschi C, Cossarizza A (2006) Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell, 5:167–175

    Article  PubMed  CAS  Google Scholar 

  72. Hamann D, Kostense S, Wolthers KC, Otto SA, Baars PA, Miedema F, van Lier RA (1999) Evidence that human CD8+CD45RA+CD27–cells are induced by antigen and evolve through extensive rounds of division. Int Immunol, 11:1027–1033

    Article  PubMed  CAS  Google Scholar 

  73. Merino J, Martinez-Gonzalez MA, Rubio M, Inoges S, Sanchez-Ibarrola A, Subira ML (1998) Progressive decrease of CD8high+ CD28+ CD57- cells with ageing. Clin Exp Immunol, 112:48–51

    Article  PubMed  CAS  Google Scholar 

  74. Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8+ T-cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol, 38:911–920

    Article  PubMed  CAS  Google Scholar 

  75. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol, 18:529–560

    Article  PubMed  CAS  Google Scholar 

  76. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature, 396:690–695

    Article  PubMed  CAS  Google Scholar 

  77. Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol, 24:657–679

    Article  PubMed  CAS  Google Scholar 

  78. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity, 9:669–676

    Article  PubMed  CAS  Google Scholar 

  79. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, Brasel K, Morrissey PJ, Stocking K, Schuh JC, Joyce S, Peschon JJ (2000) Reversible defects in natural killer and memory CD8 T-cell lineages in interleukin 15-deficient mice. J Exp Med, 191:771–780

    Article  PubMed  CAS  Google Scholar 

  80. Kim HR, Hong MS, Dan JM, Kang I (2006) Altered IL-7Ralpha expression with aging and the potential implications of IL-7 therapy on CD8+ T-cell immune responses. Blood, 107:2855–2862

    Article  PubMed  CAS  Google Scholar 

  81. Gangemi S, Basile G, Monti D, Merendino RA, Di Pasquale G, Bisignano U, Nicita-Mauro V, Franceschi C (2005) Age-related modifications in circulating IL-15 levels in humans. Mediators Inflamm, :245–247

    Google Scholar 

  82. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T-cell generation and TCR diversity. J Immunol, 174:7446–7452

    PubMed  CAS  Google Scholar 

  83. Wallace DL, Zhang Y, Ghattas H, Worth A, Irvine A, Bennett AR, Griffin GE, Beverley PC, Tough DF, Macallan DC (2004) Direct measurement of T-cell subset kinetics in vivo in elderly men and women. J Immunol, 173:1787–1794

    PubMed  CAS  Google Scholar 

  84. Geginat J, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood, 101:4260–4266

    Article  PubMed  CAS  Google Scholar 

  85. Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity, 24:495–499

    Article  PubMed  CAS  Google Scholar 

  86. Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL (1999) Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T-cells from naive T-cells of aged mice. J Exp Med, 190:1013–1024

    Article  PubMed  CAS  Google Scholar 

  87. Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L (2004) Age-related defects in CD4 T-cell cognate helper function lead to reductions in humoral responses. J Exp Med, 200:1613–1622

    Article  PubMed  CAS  Google Scholar 

  88. Cossarizza A, Monti D, Bersani F, Paganelli R, Montagnani G, Cadossi R, Cantini M, Franceschi C (1989) Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Lett, 248:141–144

    Article  PubMed  CAS  Google Scholar 

  89. Witkowski JM, Li SP, Gorgas G, Miller RA (1994) Extrusion of the P glycoprotein substrate rhodamine-123 distinguishes CD4 memory T-cell subsets that differ in IL-2-driven IL-4 production. J Immunol, 153:658–665

    PubMed  CAS  Google Scholar 

  90. Sandmand M, Bruunsgaard H, Kemp K, Andersen-Ranberg K, Schroll M, Jeune B (2003) High circulating levels of tumor necrosis factor-alpha in centenarians are not associated with increased production in T-lymphocytes. Gerontology, 49:155–160

    Article  PubMed  CAS  Google Scholar 

  91. Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T-cell immunosenescence: a mini review. Mech Ageing Dev, 127:538–543

    Article  PubMed  CAS  Google Scholar 

  92. Vescovini R, Telera A, Fagnoni FF, Biasini C, Medici MC, Valcavi P, di Pede P, Lucchini G, Zanlari L, Passeri G, Zanni F, Chezzi C, Franceschi C, Sansoni P (2004) Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T-cells. Exp Gerontol, 39:1233–1243

    Article  PubMed  Google Scholar 

  93. Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA (2004) Herpesvirus-specific CD8 T-cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol, 173:7481–7489

    PubMed  CAS  Google Scholar 

  94. Sansoni P, Fagnoni F, Vescovini R, Mazzola M, Brianti V, Bologna G, Nigro E, Lavagetto G, Cossarizza A, Monti D, Franceschi C, Passeri M (1997) T lymphocyte proliferative capability to defined stimuli and costimulatory CD28 pathway is not impaired in healthy centenarians. Mech Ageing Dev, 96:127–136

    Article  PubMed  CAS  Google Scholar 

  95. Franceschi C, Monti D, Cossarizza A, Fagnoni F, Passeri G, Sansoni P (1991) Aging, longevity, and cancer: studies in Down’s syndrome and centenarians. Ann N Y Acad Sci, 621:428–440.

    Article  PubMed  CAS  Google Scholar 

  96. Bellavia D, Frada G, Di Franco P, Feo S, Franceschi C, Sansoni P, Brai M (1999) C4, BF, C3 allele distribution and complement activity in healthy aged people and centenarians. A Biol Sci Med Sci, 54:B150–B153

    CAS  Google Scholar 

  97. Mondello C, Petropoulou C, Monti D, Gonos ES, Franceschi C, Nuzzo F (1999) Telomere length in fibroblasts and blood cells from healthy centenarians. Exp Cell Res, 248:234–242

    Article  PubMed  CAS  Google Scholar 

  98. Scola L, Candore G, Colonna-Romano G, Crivello A, Forte GI, Paolisso G, Franceschi C, Lio D, Caruso C (2005) Study of the association with -330T/G IL-2 in a population of centenarians from centre and south Italy. Biogerontology, 6:425–429

    Article  PubMed  CAS  Google Scholar 

  99. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev, 121:187–201

    Article  PubMed  CAS  Google Scholar 

  100. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol, 37:445–453

    Article  PubMed  CAS  Google Scholar 

  101. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci, 60:556–565

    PubMed  Google Scholar 

  102. Callahan JE, Kappler JW, Marrack P (1993) Unexpected expansions of CD8-bearing cells in old mice. J Immunol, 151:6657–6669

    PubMed  CAS  Google Scholar 

  103. Clambey ET, van Dyk LF, Kappler JW, Marrack P (2005) Non-malignant clonal expansions of CD8+ memory T-cells in aged individuals. Immunol Rev, 205:170–189

    Article  PubMed  CAS  Google Scholar 

  104. Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol, 23:247–257

    Article  PubMed  CAS  Google Scholar 

  105. Akbar AN, Fletcher JM (2005) Memory T-cell homeostasis and senescence during aging. Curr Opin Immunol, 17:480–485.

    Article  PubMed  CAS  Google Scholar 

  106. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T-cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 155:1151–1164

    PubMed  CAS  Google Scholar 

  107. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG (1997) A CD4 +T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 389:737–742

    Article  PubMed  CAS  Google Scholar 

  108. Kim JM, Rudensky A (2006) The role of the transcription factor Foxp3 in the development of regulatory T-cells. Immunol Rev, 212:86–98

    Article  PubMed  CAS  Google Scholar 

  109. Zheng Y, Rudensky AY (2007) Foxp3 in control of the regulatory T-cell lineage. Nat Immunol, 8:457–462

    Article  PubMed  CAS  Google Scholar 

  110. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T-cells. Nat Rev Immunol, 3:253–257

    Article  PubMed  CAS  Google Scholar 

  111. Tsaknaridis L, Spencer L, Culbertson N, Hicks K, LaTocha D, Chou YK, Whitham RH, Bakke A, Jones RE, Offner H, Bourdette DN, Vandenbark AA (2003) Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J Neurosci Res, 74:296–308

    Article  PubMed  CAS  Google Scholar 

  112. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA (2005) The number of human peripheral blood CD4+ CD25high regulatory T-cells increases with age. Clin Exp Immunol, 140:540–546

    Article  PubMed  CAS  Google Scholar 

  113. Trzonkowski P, Szmit E, Mysliwska J, Mysliwski A (2006) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK-cells in humans-impact of immunosenescence. Clin Immunol, 119:307–316

    Article  PubMed  CAS  Google Scholar 

  114. Sharma S, Dominguez AL, Lustgarten J (2006) High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol, 177:8348–8355

    PubMed  CAS  Google Scholar 

  115. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S (2006) CD4+CD25+Foxp3+ T-cells and CD4+CD25-Foxp3+ T-cells in aged mice. J Immunol, 176:6586–6593

    PubMed  CAS  Google Scholar 

  116. Shimizu J, Moriizumi E (2003) CD4+CD25- T-cells in aged mice are hyporesponsive and exhibit suppressive activity. J Immunol, 170:1675–1682

    PubMed  CAS  Google Scholar 

  117. Moser B, Eberl M (2007) gammadelta T-cells: novel initiators of adaptive immunity. Immunol Rev, 215:89–102

    Article  PubMed  CAS  Google Scholar 

  118. Morita CT, Mariuzza RA, Brenner MB (2000) Antigen recognition by human gamma delta T-cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol, 22:191–217

    Article  PubMed  CAS  Google Scholar 

  119. Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol, 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  120. Nanno M, Shiohara T, Yamamoto H, Kawakami K, Ishikawa H (2007) gammadelta T-cells: firefighters or fire boosters in the front lines of inflammatory responses. Immunol Rev, 215:103–113

    Article  PubMed  CAS  Google Scholar 

  121. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T-cells in Escherichia coli. FEBS Lett, 509:317–322

    Article  PubMed  CAS  Google Scholar 

  122. Reichenberg A, Hintz M, Kletschek Y, Kuhl T, Haug C, Engel R, Moll J, Ostrovsky DN, Jomaa H, Eberl M (2003) Replacing the pyrophosphate group of HMB-PP by a diphosphonate function abrogates Its potential to activate human gammadelta T-cells but does not lead to competitive antagonism. Bioorg Med Chem Lett, 13:1257–1260

    Article  PubMed  CAS  Google Scholar 

  123. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, Monsarrat B, Saulquin X, Maillet S, Esteve JP, Lopez F, Perret B, Collet X, Bonneville M, Champagne E (2005) Tumor recognition following Vgamma9Vdelta2 T-cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity, 22:71–80

    Article  PubMed  CAS  Google Scholar 

  124. Chen ZW, Letvin NL (2003) Vgamma2Vdelta2+ T-cells and anti-microbial immune responses. Microbes Infect, 5:491–498

    Article  PubMed  Google Scholar 

  125. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vgamma2Vdelta2+ T-cells during mycobacterial infections. Science, 295:2255–2258

    Article  PubMed  CAS  Google Scholar 

  126. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of gammadelta T-cell receptors. Science, 308:252–255

    Article  PubMed  CAS  Google Scholar 

  127. De Rosa SC, Andrus JP, Perfetto SP, Mantovani JJ, Herzenberg LA, Roederer M (2004) Ontogeny of gamma delta T-cells in humans. J Immunol, 172:1637–1645

    PubMed  Google Scholar 

  128. Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science, 291:2413–2417

    Article  PubMed  CAS  Google Scholar 

  129. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T-Cells. Science, 309:264–268

    Article  PubMed  CAS  Google Scholar 

  130. Argentati K, Re F, Donnini A, Tucci MG, Franceschi C, Bartozzi B, Bernardini G, Provinciali M (2002) Numerical and functional alterations of circulating gammadelta T lymphocytes in aged people and centenarians. J Leukoc Biol, 72:65–71

    PubMed  CAS  Google Scholar 

  131. Colonna-Romano G, Aquino A, Bulati M, Lio D, Candore G, Oddo G, Scialabba G, Vitello S, Caruso C (2004) Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol, 39:1439–1446

    Article  PubMed  CAS  Google Scholar 

  132. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T-cells. Science, 294:605–609

    Article  PubMed  CAS  Google Scholar 

  133. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T-cells. Science, 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  134. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X, Michelson S, Meric C, Hallet MM, Kourilsky P, Potaux L, Bonneville M, Moreau JF (1999) Implication of gammadelta T-cells in the human immune response to cytomegalovirus. J Clin Invest, 103:1437–1449

    Article  PubMed  CAS  Google Scholar 

  135. Sciammas R, Bluestone JA (1999) TCRgammadelta cells and viruses. Microbes Infect, 1:203–212

    Article  PubMed  CAS  Google Scholar 

  136. Dieli F, Troye-Blomberg M, Farouk SE, Sireci G, Salerno A (2001) Biology of gammadelta T-cells in tuberculosis and malaria. Curr Mol Med, 1:437–446

    Article  PubMed  CAS  Google Scholar 

  137. Ramsburg E, Tigelaar R, Craft J, Hayday A (2003) Age-dependent requirement for gammadelta T-cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med, 198:1403–1414

    Article  PubMed  CAS  Google Scholar 

  138. Caccamo N, Dieli F, Wesch D, Jomaa H, Eberl M (2006) Sex-specific phenotypical and functional differences in peripheral human Vgamma9/Vdelta2 T-cells. J Leukoc Biol, 79:663–666

    Article  PubMed  CAS  Google Scholar 

  139. Budzynski W, Radzikowski C (1994) Cytotoxic cells in immunodeficient athymic mice. Immunopharmacol Immunotoxicol, 16:319–346

    Article  PubMed  CAS  Google Scholar 

  140. Lanier LL, Yu G, Phillips JH (1989) Coassociation of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature, 342:803–805

    Article  PubMed  CAS  Google Scholar 

  141. Nakazawa T, Agematsu K, Yabuhara A (1997) Later development of Fas ligand-mediated cytotoxicity as compared with granule-mediated cytotoxicity during the maturation of natural killer cells. Immunology, 92:180–187

    Article  PubMed  CAS  Google Scholar 

  142. Griffiths GM (2003) Endocytosing the death sentence. J Cell Biol, 160:155–156

    Article  PubMed  CAS  Google Scholar 

  143. Trapani JA (1998) Dual mechanisms of apoptosis induction by cytotoxic lymphocytes. Int Rev Cytol, 182:111–192

    Article  PubMed  CAS  Google Scholar 

  144. Solana R, Mariani E (2000) NK and NK/T-cells in human senescence. Vaccine, 18:1613–1620

    Article  PubMed  CAS  Google Scholar 

  145. Kutza J, Murasko DM (1994) Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-alpha. Cell Immunol, 155:195–204

    Article  PubMed  CAS  Google Scholar 

  146. Ogata K, Yokose N, Tamura H, An E, Nakamura K, Dan K, Nomura T (1997) Natural killer cells in the late decades of human life. Clin Immunol Immunopathol, 84:269–275

    Article  PubMed  CAS  Google Scholar 

  147. Ogata K, An E, Shioi Y, Nakamura K, Luo S, Yokose N, Minami S, Dan K (2001) Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol, 124:392–397

    Article  PubMed  CAS  Google Scholar 

  148. Pawelec G, Solana R, Remarque E, Mariani E (1998) Impact of aging on innate immunity. J Leukoc Biol, 64:703–712

    PubMed  CAS  Google Scholar 

  149. Bruunsgaard H, Pedersen AN, Schroll M, Skinhoj P, Pedersen BK (2001) Decreased natural killer cell activity is associated with atherosclerosis in elderly humans. Exp Gerontol, 37:127–136

    Article  PubMed  CAS  Google Scholar 

  150. Mysliwska J, Trzonkowski P, Szmit E, Brydak LB, Machala M, Mysliwski A (2004) Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp Gerontol, 39:1447–1458

    Article  PubMed  CAS  Google Scholar 

  151. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E, et al (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood, 82:2767–2773

    PubMed  CAS  Google Scholar 

  152. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK-cells from elderly people. Exp Gerontol, 34:253–265

    Article  PubMed  CAS  Google Scholar 

  153. Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK (2005) Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev, 126:722–731

    Article  PubMed  CAS  Google Scholar 

  154. Mariani E, Monaco MC, Cattini L, Sinoppi M, Facchini A (1994) Distribution and lytic activity of NK cell subsets in the elderly. Mech Ageing Dev, 76:177–187

    Article  PubMed  CAS  Google Scholar 

  155. Mariani E, Sgobbi S, Meneghetti A, Tadolini M, Tarozzi A, Sinoppi M, Cattini L, Facchini A (1996) Perforins in human cytolytic cells: the effect of age. Mech Ageing Dev, 92:195–209

    Article  PubMed  CAS  Google Scholar 

  156. Rukavina D, Laskarin G, Rubesa G, Strbo N, Bedenicki I, Manestar D, Glavas M, Christmas SE, Podack ER (1998) Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood, 92:2410–2420

    PubMed  CAS  Google Scholar 

  157. Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, Motta M, Monti D, Bonafe M, Ferrucci L, Deiana L, Pes GM, Carru C, Desole MS, Barbi C, Sartoni G, Gemelli C, Lescai F, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Gueresi P, Cossarizza A, Troiano L, Pini G, Sansoni P, Passeri G, Lisa R, Spazzafumo L, Amadio L, Giunta S, Stecconi R, Morresi R, Viticchi C, Mattace R, De Benedictis G, Baggio G (2000) Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging (Milano), 12:77–84

    CAS  Google Scholar 

  158. Rink L, Cakman I, Kirchner H (1998) Altered cytokine production in the elderly. Mech Ageing Dev, 102:199–209

    Article  PubMed  CAS  Google Scholar 

  159. Murasko DM, Jiang J (2005) Response of aged mice to primary virus infections. Immunol Rev, 205:285–296

    Article  PubMed  CAS  Google Scholar 

  160. Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol, 32:1524–1529

    Article  PubMed  CAS  Google Scholar 

  161. Kelley KW, Weigent DA, Kooijman R (2007) Protein hormones and immunity. Brain Behav Immun, 21:384–392

    Article  PubMed  CAS  Google Scholar 

  162. Straub RH, Cutolo M (2001) Involvement of the hypothalamic--pituitary--adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. Arthritis Rheum, 44:493–507

    Article  PubMed  CAS  Google Scholar 

  163. Mocchegiani E, Giacconi R, Muti E, Rogo C, Bracci M, Muzzioli M, Cipriano C, Malavolta M (2004) Zinc, immune plasticity, aging, and successful aging: role of metallothionein. Ann N Y Acad Sci, 1019:127–134

    Article  PubMed  CAS  Google Scholar 

  164. Mocchegiani E, Malavolta M (2004) NK and NKT cell functions in immunosenescence. Aging Cell, 3:177–184

    Article  PubMed  CAS  Google Scholar 

  165. Mariani E, Ravaglia G, Forti P, Meneghetti A, Tarozzi A, Maioli F, Boschi F, Pratelli L, Pizzoferrato A, Piras F, Facchini A (1999) Vitamin D, thyroid hormones and muscle mass influence natural killer (NK) innate immunity in healthy nonagenarians and centenarians. Clin Exp Immunol, 116:19–27

    Article  PubMed  CAS  Google Scholar 

  166. Miyaji C, Watanabe H, Toma H, Akisaka M, Tomiyama K, Sato Y, Abo T (2000) Functional alteration of granulocytes, NK-cells, and natural killer T-cells in centenarians. Hum Immunol, 61:908–916

    Article  PubMed  CAS  Google Scholar 

  167. Mocchegiani E, Muzzioli M, Giacconi R, Cipriano C, Gasparini N, Franceschi C, Gaetti R, Cavalieri E, Suzuki H (2003) Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev, 124:459–468

    Article  PubMed  CAS  Google Scholar 

  168. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T-cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T-cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med, 178:1–16

    Article  PubMed  CAS  Google Scholar 

  169. Davodeau F, Peyrat MA, Necker A, Dominici R, Blanchard F, Leget C, Gaschet J, Costa P, Jacques Y, Godard A, Vie H, Poggi A, Romagne F, Bonneville M (1997) Close phenotypic and functional similarities between human and murine alphabeta T-cells expressing invariant TCR alpha-chains. J Immunol, 158:5603–5611

    PubMed  CAS  Google Scholar 

  170. Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995) Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T-cell populations. Int Immunol, 7:1157–1161

    Article  PubMed  CAS  Google Scholar 

  171. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT-cells in innate and acquired immune response. Annu Rev Immunol, 21:483–513

    Article  PubMed  CAS  Google Scholar 

  172. Prussin C, Foster B (1997) TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T-cell analog containing a unique Th0 subpopulation. J Immunol, 159:5862–5870

    PubMed  CAS  Google Scholar 

  173. Brigl M, Brenner MB (2004) CD1: antigen presentation and T-cell function. Annu Rev Immunol, 22:817–890

    Article  PubMed  CAS  Google Scholar 

  174. Bendelac A, Rivera MN, Park SH, et al (1997) Mouse CD1-specific NK1 T-cells: development, specificity, and function. Annu Rev Immunol, 15:535–562

    Article  PubMed  CAS  Google Scholar 

  175. Zhou D, Mattner J, Cantu C, 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT-cells. Science, 306:1786–1789

    Article  PubMed  CAS  Google Scholar 

  176. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T-cells. Nature, 434:520–525

    Article  PubMed  CAS  Google Scholar 

  177. Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med, 202:1517–1526

    Article  PubMed  CAS  Google Scholar 

  178. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT-cells during microbial infections. Nature, 434:525–529

    Article  PubMed  CAS  Google Scholar 

  179. Kim CH, Butcher EC, Johnston B (2002) Distinct subsets of human Valpha24-invariant NKT-cells: cytokine responses and chemokine receptor expression. Trends Immunol, 23:516–519

    Article  PubMed  CAS  Google Scholar 

  180. Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human V(alpha)24 natural killer T-cells. J Exp Med, 195:637–641

    Article  PubMed  CAS  Google Scholar 

  181. Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T-cells revealed by CD1d tetramer staining. J Exp Meds, 195:625–636

    Article  CAS  Google Scholar 

  182. D’Andrea A, Goux D, De Lalla C, Koezuka Y, Montagna D, Moretta A, Dellabona P, Casorati G, Abrignani S (2000) Neonatal invariant Valpha24+ NKT lymphocytes are activated memory cells. Eur J Immunol, 30:1544–1550

    Article  PubMed  CAS  Google Scholar 

  183. Sandberg JK, Bhardwaj N, Nixon DF (2003) Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Valpha24 NKT cell compartment. Eur J Immunol, 33:588–596

    Article  PubMed  CAS  Google Scholar 

  184. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol, 7:505–518

    Article  PubMed  CAS  Google Scholar 

  185. Seino K, Taniguchi M (2004) Functional roles of NKT cell in the immune system. Front Biosci, 9:2577–2587

    Article  PubMed  CAS  Google Scholar 

  186. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT-cells. J Clin Invest, 114:1379–1388

    PubMed  CAS  Google Scholar 

  187. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nishimura T (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT-cells. J Exp Med, 189:1121–1128

    Article  PubMed  CAS  Google Scholar 

  188. Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H, Fujisawa T, Shinkai H, Taniguchi M (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT-cells. Cancer Res, 59:5102–5105

    PubMed  CAS  Google Scholar 

  189. Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Valpha24+Vbeta11+ NKT-cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood, 103:383–389

    Article  PubMed  CAS  Google Scholar 

  190. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol, 23:877–900

    Article  PubMed  CAS  Google Scholar 

  191. Linsen L, Somers V, Stinissen P (2005) Immunoregulation of autoimmunity by natural killer T-cells. Hum Immunol, 66:1193–1202

    Article  PubMed  CAS  Google Scholar 

  192. MacDonald HR (2002) Development and selection of NKT-cells. Curr Opin Immunol, 14:250–254

    Article  PubMed  CAS  Google Scholar 

  193. McNerlan SE, Rea IM, Alexander HD, Morris TC (1998) Changes in natural killer cells, the CD57CD8 subset, and related cytokines in healthy aging. J Clin Immunol, 18:31–38

    Article  PubMed  CAS  Google Scholar 

  194. Miyaji C, Watanabe H, Minagawa M, Toma H, Kawamura T, Nohara Y, Nozaki H, Sato Y, Abo T (1997) Numerical and functional characteristics of lymphocyte subsets in centenarians. J Clin Immunol, 17:420–429

    Article  PubMed  CAS  Google Scholar 

  195. DelaRosa O, Tarazona R, Casado JG, Alonso C, Ostos B, Pena J, Solana R (2002) Valpha24+NKT-cells are decreased in elderly humans. Exp Gerontol, 37:213–217

    Article  PubMed  CAS  Google Scholar 

  196. Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ (2004) Modulation of human Valpha24(+)Vbeta11(+) NKT-cells by age, malignancy and conventional anticancer therapies. Br J Cancer, 91:1880–1886

    Article  PubMed  CAS  Google Scholar 

  197. Molling JW, Kolgen W, Van Der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, Molenkamp BG, Langendijk JA, Leemans CR, von Blomberg BM, Scheper RJ, Van Den Eertwegh AJ (2005) Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer, 116:87–93

    Article  PubMed  CAS  Google Scholar 

  198. Peralbo E, Delarosa O, Gayoso I, Pita ML, Tarazona R, Solana R (2006) Decreased frequency and proliferative response of invariant Valpha24Vbeta11 natural killer T (iNKT) cells in healthy elderly. Biogerontology, 7:483–492

    Article  PubMed  CAS  Google Scholar 

  199. Jing Y, Gravenstein S, Rao Chaganty N, Chen N, Lyerly KH, Joyce S, Deng Y (2007) Aging is associated with a rapid decline in frequency, alterations in subset composition, and enhanced Th2 response in CD1d-restricted NKT-cells from human peripheral blood. Exp Gerontol

    Google Scholar 

  200. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT-cells: what’s in a name? Nat Rev Immunol, 4:231–237

    Article  PubMed  CAS  Google Scholar 

  201. Tarazona R, DelaRosa O, Alonso C, Ostos B, Espejo J, Pena J, Solana R (2000) Increased expression of NK cell markers on T-lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T-cells. Mech Ageing Dev, 121:77–88

    Article  PubMed  CAS  Google Scholar 

  202. Abedin S, Michel JJ, Lemster B, Vallejo AN (2005) Diversity of NKR expression in aging T-cells and in T-cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol, 40:537–548

    Article  PubMed  CAS  Google Scholar 

  203. Berzins SP, Uldrich AP, Pellicci DG, McNab F, Hayakawa Y, Smyth MJ, Godfrey DI (2004) Parallels and distinctions between T and NKT cell development in the thymus. Immunol Cell Biol, 82:269–275

    Article  PubMed  Google Scholar 

  204. Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med, 202:485–492

    Article  PubMed  CAS  Google Scholar 

  205. Egawa T, Eberl G, Taniuchi I, Benlagha K, Geissmann F, Hennighausen L, Bendelac A, Littman DR (2005) Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity, 22:705–716

    Article  PubMed  CAS  Google Scholar 

  206. Forsey RJ, Thompson JM, Ernerudh J, Hurst TL, Strindhall J, Johansson B, Nilsson BO, Wikby A (2003) Plasma cytokine profiles in elderly humans. Mech Ageing Dev, 124:487–493

    Article  PubMed  CAS  Google Scholar 

  207. De Martinis M, Modesti M, Ginaldi L (2004) Phenotypic and functional changes of circulating monocytes and polymorphonuclear leucocytes from elderly persons. Immunol Cell Biol, 82:415–420

    Article  PubMed  Google Scholar 

  208. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol, 4:648–655

    Article  PubMed  CAS  Google Scholar 

  209. Lugli E, Troiano L, Cossarizza A. Investigating T cells by polychromatic flow cytometry. T cell protocols:Second edition, Vol. 54. G. De Libero Ed. Humana Press, 2009 (in press)

    Google Scholar 

  210. Clambey ET, Kappler JW, Marrack P (2007) CD8 T-cell clonal expansions & aging: a heterogeneous phenomenon with a common outcome. Exp Gerontol, 42:407–411

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lugli, E. et al. (2009). Lymphocytes Sub-Types and Functions in Centenarians as Models for Successful Ageing. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_2

Download citation

Publish with us

Policies and ethics