Skip to main content

Controls on Shell Shape in Acanthoceratid Ammonites from the Cenomanian-Turonian Western Interior Seaway

  • Chapter
High-Resolution Approaches in Stratigraphic Paleontology

Part of the book series: Topics in Geobiology ((TGBI,volume 21))

Epeiric seas have often played host to the rapid evolutionary radiations of ammonoid groups. The Cretaceous Western Interior Seaway was no exception. Members of the ornamented ammonite family Acanthoceratidae migrated into and radiated within the newly formed Western Interior Seaway during the Cenomanian. Due to the intensive work on constructing a high-resolution stratigraphic framework for the Western Interior (see Kauffman, 1986; Kauffman et al., 1987, 1993; Kauffman and Caldwell, 1993 for overviews), this radiation of ammonites is extremely well-constrained stratigraphically, geographically, and temporally. The well-defined and limited nature of the acanthoceratid diversification makes the event a natural experiment for exploring patterns and processes associated with rapid endemic radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batt, R. J., 1989, Ammonite shell morphospace distribution in the Western Interior Greenhorn Sea and some paleoecological implications, Palaios 4:32-43.

    Article  Google Scholar 

  • Batt, R. J., 1991, Sutural amplitude of ammonite shells as a paleoenvironmental indicator, Lethaia 24:219-255.

    Article  Google Scholar 

  • Batt, R. J., 1993, Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea, Lethaia 26: 49-63.

    Article  Google Scholar 

  • Bayer, U., and McGhee, G. R., Jr., 1984, Iterative evolution of Middle Jurassic ammonite faunas, Lethaia 17:1-16.

    Article  Google Scholar 

  • ayer, U., and McGhee, G. R., Jr., 1985, Evolution in marginal epicontinental basins: The role of phylogenetic and ecological factors, in: Sedimentary and Evolutionary Cycles, (U. Bayer and A. Seilacher, eds.), Springer Verlag, Berlin,:164-220.

    Google Scholar 

  • Bayer, U., and Seilacher, A. (eds.), 1985, Sedimentary and Evolutionary Cycles, Springer Verlag, Berlin, Lect. Notes Ear. Sci. 1.

    Google Scholar 

  • Becker, R. T., 1993, Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change (M. R. House, ed.), Syst. Assoc. Sp. Vol. 47:115-163.

    Google Scholar 

  • Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Sp. Pap. Palaeont. 33:49-90.

    Google Scholar 

  • Checa, A., Company, M., Sandoval, J., and Weitschat, W., 1997, Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi, Lethaia 29:225-235.

    Article  Google Scholar 

  • Cobban, W. A., 1987, Some Middle Cenomanian (Upper Cretaceous) Acanthoceratid Ammonites from the Western Interior of the United States, U. S. Geol. Surv. Bull. 1445.

    Google Scholar 

  • Cobban, W. A., 1988, Some Acanthoceratid Ammonites from Upper Cenomanian (Upper Cretaceous) Rocks of Wyoming, U. S. Geol. Surv. Bull. 1353.

    Google Scholar 

  • Cobban, W. A., 1990, Ammonites and some characteristic bivalves from the Upper Cretaceous Frontier Formation, Natrona County, Wyoming, U. S. Geol. Surv. Bull. 1917-B.

    Google Scholar 

  • Cobban, W. A., and Kennedy, W. J., 1991, Evolution and biogeography of the Cenomanian (Upper Cretaceous) ammonite Metoicoceras Hyatt, 1903, with a revision of Metoicoceras praecox Haas, 1949, U. S. Geol. Surv. Bull. 1934.

    Google Scholar 

  • Courville, P., 1992, Les Vascoceratinae et les Pseudotissotiinae (Ammonitina) d’Ashaka (NE Nigeria): Relations avec leur environnement biosédimentaire, Bull. Centres Rech. Explor.Prod. Elf Aquitaine 16:407-457.

    Google Scholar 

  • Courville, P., and Thierry, J., 1993, Nouvelles données biostratigraphiques sur les dépots cénomano-turoniens de Nord-Est du fossé de la Bénoué (Nigéria), Cret. Res. 14:385-396.

    Article  Google Scholar 

  • Crick, R. E., 1978, Morphological variations in the ammonite Scaphites of the Blue Hill Member, Carlile Shale, Upper Cretaceous, Kansas, Univ. Kans. Paleont. Cont. 88.

    Google Scholar 

  • Dagys, A. S., and Wietschat, W., 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia, Lethaia 26:113-121.

    Article  Google Scholar 

  • Daniel, T. L., Helmuth, B. S., Saunders, W. B., and Ward, P. D., 1997, Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth, Paleobio. 23:470-481.

    Google Scholar 

  • Donovan, D. T., 1985, Ammonite shell form and transgression in the British Lower Jurassic, in: Sedimentary and Evolutionary Cycles (U. Bayer and A. Seilacher, eds.), SpringerVerlag, Berlin Lect. Notes Ear. Sci. 1:48-57.

    Chapter  Google Scholar 

  • Elder, W. P., 1989, Molluscan extinction patterns across the Cenomanian-Turonian Stage boundary in the western interior of the United States, Paleobio. 15: 299-320.

    Google Scholar 

  • Goodfriend, G. A., 1986, Variation in land-snail shell form and size and its causes: A review, Syst. Zool. 35: 204-223.

    Article  Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.

    Google Scholar 

  • Haas, O., 1942, Recurrence of morphological types and evolutionary cycles in Mesozoic ammonites, J. Paleont. 16: 643-650.

    Google Scholar 

  • Haas, O., 1946, Intraspecific variation in, and ontogeny of, Prionotropis woollgari and Prionocyclus wyomingense, Bull. Am. Mus. Nat. Hist. 86:.

    Google Scholar 

  • Hancock, J. M., Kennedy, W. J., and Cobban, W. A., 1993, A correlation of the Upper Albian to basal Coniacian sequences of northwest Europe, Texas and the United States Western Interior, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, eds.), Geol. Assoc. Can. Sp. Pap. 39:453-476.

    Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 1997, Mechanical significance of ammonoid septa with complex sutures, Lethaia 30:205-212.

    Google Scholar 

  • Jacobs, D. K., 1992, Shape, drag, and power in ammonoid swimming, Paleobio. 18:203-220.

    Google Scholar 

  • Jacobs, D. K., Landman, N. H., and Chamberlain, J. A., Jr., 1993, Intraspecific variation in shell shape, hydrodynamics, and facies relationships in Scaphites whitfieldi, an Upper Cretaceous ammonoid from the Carlile Shale, Geol. Assoc. Am. Abs. Prog. 25:A51.

    Google Scholar 

  • Jacobs, D. K., Landman, N. H., and Chamberlain, J. A., Jr., 1994, Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment, Geology 22:905-908.

    Article  Google Scholar 

  • Kauffman, E. G., 1986, High-resolution event stratigraphy: Regional and global Cretaceous bio-events, in: Global Bio-events: A Critical Approach, (Otto H. Walliser, ed.), Springer Verlag, Berlin, Lect. Notes Ear. Sci. 8:279-335.

    Chapter  Google Scholar 

  • Kauffman, E. G., 1995, Global change leading to biodiversity crisis in a greenhouse world: The Cenomanian-Turonian (Cretaceous) mass extinction, in: Effects of Past Global Change on Life, National Research Council, National Academy Press, Washington, D. C., pp. 47-71.

    Google Scholar 

  • Kauffman, E. G., and Caldwell, W. G. E., 1993, The Western Interior Basin in Space and Time, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, eds.), Geol. Assoc. Can. Sp. Pap. 39:1-30.

    Google Scholar 

  • Kauffman, E. G., Sageman, B. B., Elder, W. P., and E. R. Gustason, E. R., 1987, Highresolution event stratigraphy, Greenhorn Cyclothem (Cretaceous: Cenomanian-Turonian), Western Interior Basin of Colorado and Utah, Geological Society of America, Rocky Mountain Section Meeting, Field Guide, Boulder.

    Google Scholar 

  • Kauffman, E. G., Sageman, B. B., Kirkland, J. I., Elder, W. P., Harries, P. J., and Villamil, T., 1993, Molluscan biostratigraphy of the Western Interior Cretaceous Basin, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, eds.), Geol. Assoc. Can. Sp. Pap. 39:397-434.

    Google Scholar 

  • Kennedy, W. J., 1971, Cenomanian ammonites from southern England, Palaeont. Assoc., Sp. Pap. Palaeont. 8.

    Google Scholar 

  • Kennedy, W. J., 1988, Late Cenomanian and Turonian ammonite faunas from north-east and central Texas, Sp. Pap. Palaeont. 39.

    Google Scholar 

  • Kennedy, W. J., Wright, C. W., and Hancock, J. M., 1980, Origin, evolution, and systematics of the Cretaceous ammonoid Spathites, Palaeont. 23:821-837.

    Google Scholar 

  • Korn, D., 1995, Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wocklumeria Stufe, Lethaia 28:155-165.

    Article  Google Scholar 

  • Lloyd, E. A, and Gould, S. J., 1993, Species selection on variability, Proc. Nat. Acad. Sci. 90:595-599.

    Article  Google Scholar 

  • McCune, A. R., 1990, Evolutionary novelty and atavism in the Semionotus Complex: Relaxed selection during colonization of an expanding lake, Evol. 44:71-85.

    Article  Google Scholar 

  • McKinney, M. L., 1986, Ecological causation of heterochrony: test and implications for evolutionary theory, Paleobio. 12:282-289.

    Google Scholar 

  • McNamara, K. J., 1988, The abundance of heterochrony in the fossil record, in: Heterochrony in Evolution (M. L. McKinney, ed.), Plenum Press, New York, pp. 287-325.

    Google Scholar 

  • Obradovich, J. D., 1993, A Cretaceous Time Scale, in: Evolution of the Western Interior Basin, (W. G. E. Caldwell and E. G. Kauffman, eds.), Geol. Assoc. Can. Sp. Pap. 39:379-396.

    Google Scholar 

  • Reeside, J. B., Jr., and Cobban, W. A., 1960, Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada, U. S. Geol. Surv. Prof. Pap. 355.

    Google Scholar 

  • Reyment, R. A., 1975, Analysis of a generic level transition in Cretaceous ammonites, Evolution 28:665-676.

    Article  Google Scholar 

  • Reyment, R. A., 1988, Does sexual dimorphism occur in Upper Cretaceous ammonites?, Senck. Leth. 69:109-119.

    Google Scholar 

  • Reyment, R. A., and Kennedy, W. J., 1991, Phenotypic plasticity in a Cretaceous ammonite analyzed by multivariate statistical methods, Evol. Biol. 25:411-426.

    Google Scholar 

  • Roberts, L. N. R., and Kirschbaum, M. A., 1995, Paleogeography of the Late Cretaceous of the Western Interior of Middle North America - Coal distribution and sediment accumulation, U. S. Geol. Surv. Prof. Pap. 1561.

    Google Scholar 

  • Sageman, B. B., 1996, Lowstand tempestites: Depositional model for Cretaceous skeletal limestones, Western Interior basin, Geology 24:888-892.

    Article  Google Scholar 

  • Saunders, W. B., 1995, The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids, Paleobio. 21:343-355.

    Google Scholar 

  • Saunders, W. B., and Work, D. M., 1996, Shell morphology and suture complexity in Upper Carboniferous ammonoids, Paleobio. 22:189-218.

    Google Scholar 

  • Sheldon, P. R., 1993, Making sense of microevolutionary patterns, in: Evolutionary Patterns and Processes (D. R. Lees and D. Edwards, eds.), Linnean Soc. Sym. Vol. 14:19-31.

    Google Scholar 

  • Smith, A. G., Smith, D. G., and Funnell, B. M., 1994, Atlas of Mesozoic and Cenozoic Coastlines, Cambridge University Press, Cambridge.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1981, Biometry: The Principles and Practice of Statistics in Biological Research, W. H. Freeman and Company, New York.

    Google Scholar 

  • West-Eberhard, M. J., 1989, Phenotypic plasticity and the origins of diversity, Ann. Rev. Ecol. Syst. 20:249-278.

    Article  Google Scholar 

  • Westermann, G. E. G., 1966, Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen), N. Jahrb. Geol. Paläont., Abh. 124:289-312.

    Google Scholar 

  • Williams, G. C., 1966, Adaptation and Natural Selection, Princeton, Princeton University Press.

    Google Scholar 

  • Wright, C. W., and Kennedy, W. J., 1981, The Ammonoidea of the Plenus Marls and the Middle Chalk, Monograph of the Palaeontological Society, London.

    Google Scholar 

  • Wright, C. W., and Kennedy, W. J., 1984, The Ammonoidea of the Lower Chalk, Part 1, Monograph of the Palaeontological Society, London, pp. 1-126.

    Google Scholar 

  • Wright, C. W., and Kennedy, W. J., 1987, The Ammonoidea of the Lower Chalk, Part 2, Monograph of the Palaeontological Society, London, pp. 127-218.

    Google Scholar 

  • Yacobucci, M. M., 1999, Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids: An example from the Cenomanian Western Interior Seaway of North America. In: Advancing Research in Living and Fossil Cephalopods, Proceedings, IV International Symposium Cephalopods - Present and Past, Granada, Spain, July 15-17, 1996 (F. Olóriz and F. J. Rodríguez-Tovar, eds.), Plenum Press, New York, pp. 59-76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Yacobucci, M.M. (2008). Controls on Shell Shape in Acanthoceratid Ammonites from the Cenomanian-Turonian Western Interior Seaway. In: Harries, P.J. (eds) High-Resolution Approaches in Stratigraphic Paleontology. Topics in Geobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9053-0_6

Download citation

Publish with us

Policies and ethics