Skip to main content

Internal Variables and Scale Separation in Dynamics of Microstructured Solids

  • Conference paper
IUTAM Symposium on Scaling in Solid Mechanics

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 10))

  • 1035 Accesses

Abstract

Internal variables are introduced in the framework of canonical thermomechanics on the material manifold. The canonical equations for energy and pseudomomentum cannot be separated by means of the scale separation because these equations should concern all fields together and, therefore, all scales together. However, the intrinsic interaction force requires a kinetic relation for internal variables. This kinetic relation depends on representation of the internal variable as “internal variable of state” or “internal degree of freedom”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truesdell C, Toupin RA. “The classical field theories”, In: Flüge S. (Ed.), Encyclopedia of Physics, vol. III/1, Berlin, Springer, 1960.

    Google Scholar 

  2. Mindlin RD. “Microstructure in linear elasticity”, Arch. Rat. Mech. Anal., 16, pp. 51–78, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  3. Eringen AC, Suhubi ES. “Nonlinear theory of simple microelastic solids I & II”, Int. J. Engng. Sci., 2, pp. 189–203, 389–404, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  4. Truesdell C, Noll W. “The non-linear field theories of mechanics”, In: Flüge S. (Ed.), Encyclopedia of Physics, vol. III/3. Berlin, Springer, 1965.

    Google Scholar 

  5. Noll W.“Materially uniform simple bodies with inhomogeneities”, Arch. Rat. Mech. Anal., 27, pp. 1–32, 1967.

    Article  MathSciNet  Google Scholar 

  6. Capriz G, Podio-Guidugli P. “Discrete and continuous bodies with affine structure”, Ann. Matem., 111, pp. 195–211, 1976.

    Article  MathSciNet  Google Scholar 

  7. Capriz G. Continua with Microstructure, Heidelberg, Springer, 1989.

    MATH  Google Scholar 

  8. Naghdi PM, Srinivasa AR. “A dynamical theory of structured solids. Part I: Basic developments”, Philos. Trans. R. Soc. Lond., A 345, pp. 425–458 and 459–476, 1993.

    MathSciNet  Google Scholar 

  9. Green AE, Naghdi PM. “A unified procedure for construction of theories of deformable media”, Proc. R. Soc. Lond., A 448, pp. 335–356 and 357–377, 1995.

    MathSciNet  Google Scholar 

  10. Eringen AC. Microcontinuum Field Theories, vol.I, New York, Springer, 1999.

    Google Scholar 

  11. Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam, Elsevier, 1993.

    MATH  Google Scholar 

  12. Miehe C, Koch A. “Computational micro-to-macro transition of discretized microstructures undergoing small strain”, Arch. Appl. Mech., 72, pp. 300–317, 2002.

    Article  MATH  Google Scholar 

  13. Kouznetsova VG, Geers MGD, Brekelmans WAM. “Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy”, Comput. Methods Appl. Mech. Engrg., 193, pp. 5525–5550, 2004.

    Article  MATH  Google Scholar 

  14. Coleman BD, Gurtin ME. “Thermodynamics with internal state variables”, J. Chem. Phys., 47, pp. 597–613, 1967.

    Article  Google Scholar 

  15. Rice JR. “Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity”, J. Mech. Phys. Solids, 19, pp. 433–455, 1971.

    Article  MATH  Google Scholar 

  16. Maugin GA, Muschik W.“Thermodynamics with internal variables”, J. Non-Equilib. Thermodyn., 19, pp. 217–249, 1994. (See also pp. 250–289)

    MATH  Google Scholar 

  17. Maugin GA.“On the thermomechanics of continuous media with diffusion and/or weak nonlocality”, Arch. Appl. Mech., 75, pp. 723–738, 2006.

    Article  MATH  Google Scholar 

  18. Maugin GA. “Thermomechanics of inhomogeneous-heterogeneous systems: application to the irreversible progress of two- and three-dimensional defects”, ARI 50, pp. 41–56, 1997.

    Google Scholar 

  19. Maugin GA. “On shock waves and phase-transition fronts in continua”, ARI, 50, pp. 141–150, 1998.

    Article  Google Scholar 

  20. Eshelby JD. “The force on an elastic singularity”, Philos. Trans. R. Soc. Lond., A 244, pp. 87–112, 1951.

    MathSciNet  Google Scholar 

  21. Gurtin ME. “The nature of configurational forces”, Arch. Rat. Mech. Anal., 131, pp. 67–100, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kienzler R, Herrmann G.Mechanics in Material Space, Berlin, Springer, 2000.

    MATH  Google Scholar 

  23. Maugin GA. Material Inhomogeneities in Elasticity, London, Chapman and Hall, 1993.

    MATH  Google Scholar 

  24. Maugin GA. “Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics”, J. Elast., 71, pp. 81–103, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  25. Maugin GA. “Internal variables and dissipative structures”, J. Non-Equilib. Thermodyn., 15, pp. 173–192, 1990.

    Article  Google Scholar 

  26. Engelbrecht J, Berezovski A, Pastrone F, Braun M. “Waves in microstructured materials and dispersion”, Phil. Mag., 85, pp. 4127–4141, 2005.

    Article  Google Scholar 

  27. Engelbrecht J, Cermelli P, Pastrone F. “Wave hierarchy in microstructured solids”, In: Geometry, Continua and Microstructure, Maugin GA, (Ed.), Paris, Hermann Publ., 1999, pp. 99–111.

    Google Scholar 

  28. Metrikine AV, Askes H. “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure–Part 1: generic formulation”, Eur. J. Mech. A Solids, 21, pp. 555–572, 2002.

    Article  MATH  Google Scholar 

  29. Metrikine AV. “On causality of the gradient elasticity models”, J. Sound Vibr. 297, pp. 727–742, 2006.

    Article  MathSciNet  Google Scholar 

  30. Santosa F, Symes WW. “A dispersive effective medium for wave propagation in periodic composites”, SIAM J. Appl. Math. 51, pp. 984–1005, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang ZP, Sun CT. “Modeling micro-inertia in heterogeneous materials under dynamic loading”, Wave Motion, 36, pp. 473–485, 2002.

    Article  MATH  Google Scholar 

  32. Metrikine AV, Askes H. “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure–Part 2: static and dynamic response”, Eur. J. Mech. A Solids, 21, pp. 573–588, 2002.

    Article  MATH  Google Scholar 

  33. Janno J, Engelbrecht J. “Waves in microstructured solids: Inverse problems”, Wave Motion, 43, pp. 1–11, 2005.

    Article  MathSciNet  Google Scholar 

  34. Janno J, Engelbrecht J. “An inverse solitary wave problem related to microstructured materials”, Inverse Probl., 21, pp. 2019–2034, 2005.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Berezovski, A., Engelbrecht, J., Maugin, G.A. (2009). Internal Variables and Scale Separation in Dynamics of Microstructured Solids. In: Borodich, F. (eds) IUTAM Symposium on Scaling in Solid Mechanics. Iutam Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9033-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9033-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9032-5

  • Online ISBN: 978-1-4020-9033-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics