Internal Variables and Scale Separation in Dynamics of Microstructured Solids

  • Arkadi Berezovski
  • Jüri Engelbrecht
  • Gérard A. Maugin
Conference paper
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)


Internal variables are introduced in the framework of canonical thermomechanics on the material manifold. The canonical equations for energy and pseudomomentum cannot be separated by means of the scale separation because these equations should concern all fields together and, therefore, all scales together. However, the intrinsic interaction force requires a kinetic relation for internal variables. This kinetic relation depends on representation of the internal variable as “internal variable of state” or “internal degree of freedom”.


Internal variables kinetic relation material formulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Truesdell C, Toupin RA. “The classical field theories”, In: Flüge S. (Ed.), Encyclopedia of Physics, vol. III/1, Berlin, Springer, 1960.Google Scholar
  2. 2.
    Mindlin RD. “Microstructure in linear elasticity”, Arch. Rat. Mech. Anal., 16, pp. 51–78, 1964.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eringen AC, Suhubi ES. “Nonlinear theory of simple microelastic solids I & II”, Int. J. Engng. Sci., 2, pp. 189–203, 389–404, 1964.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Truesdell C, Noll W. “The non-linear field theories of mechanics”, In: Flüge S. (Ed.), Encyclopedia of Physics, vol. III/3. Berlin, Springer, 1965.Google Scholar
  5. 5.
    Noll W.“Materially uniform simple bodies with inhomogeneities”, Arch. Rat. Mech. Anal., 27, pp. 1–32, 1967.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Capriz G, Podio-Guidugli P. “Discrete and continuous bodies with affine structure”, Ann. Matem., 111, pp. 195–211, 1976.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Capriz G. Continua with Microstructure, Heidelberg, Springer, 1989.zbMATHGoogle Scholar
  8. 8.
    Naghdi PM, Srinivasa AR. “A dynamical theory of structured solids. Part I: Basic developments”, Philos. Trans. R. Soc. Lond., A 345, pp. 425–458 and 459–476, 1993.MathSciNetGoogle Scholar
  9. 9.
    Green AE, Naghdi PM. “A unified procedure for construction of theories of deformable media”, Proc. R. Soc. Lond., A 448, pp. 335–356 and 357–377, 1995.MathSciNetGoogle Scholar
  10. 10.
    Eringen AC. Microcontinuum Field Theories, vol.I, New York, Springer, 1999.Google Scholar
  11. 11.
    Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam, Elsevier, 1993.zbMATHGoogle Scholar
  12. 12.
    Miehe C, Koch A. “Computational micro-to-macro transition of discretized microstructures undergoing small strain”, Arch. Appl. Mech., 72, pp. 300–317, 2002.zbMATHCrossRefGoogle Scholar
  13. 13.
    Kouznetsova VG, Geers MGD, Brekelmans WAM. “Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy”, Comput. Methods Appl. Mech. Engrg., 193, pp. 5525–5550, 2004.zbMATHCrossRefGoogle Scholar
  14. 14.
    Coleman BD, Gurtin ME. “Thermodynamics with internal state variables”, J. Chem. Phys., 47, pp. 597–613, 1967.CrossRefGoogle Scholar
  15. 15.
    Rice JR. “Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity”, J. Mech. Phys. Solids, 19, pp. 433–455, 1971.zbMATHCrossRefGoogle Scholar
  16. 16.
    Maugin GA, Muschik W.“Thermodynamics with internal variables”, J. Non-Equilib. Thermodyn., 19, pp. 217–249, 1994. (See also pp. 250–289)zbMATHGoogle Scholar
  17. 17.
    Maugin GA.“On the thermomechanics of continuous media with diffusion and/or weak nonlocality”, Arch. Appl. Mech., 75, pp. 723–738, 2006.CrossRefzbMATHGoogle Scholar
  18. 18.
    Maugin GA. “Thermomechanics of inhomogeneous-heterogeneous systems: application to the irreversible progress of two- and three-dimensional defects”, ARI 50, pp. 41–56, 1997.Google Scholar
  19. 19.
    Maugin GA. “On shock waves and phase-transition fronts in continua”, ARI, 50, pp. 141–150, 1998.CrossRefGoogle Scholar
  20. 20.
    Eshelby JD. “The force on an elastic singularity”, Philos. Trans. R. Soc. Lond., A 244, pp. 87–112, 1951.MathSciNetGoogle Scholar
  21. 21.
    Gurtin ME. “The nature of configurational forces”, Arch. Rat. Mech. Anal., 131, pp. 67–100, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kienzler R, Herrmann G.Mechanics in Material Space, Berlin, Springer, 2000.zbMATHGoogle Scholar
  23. 23.
    Maugin GA. Material Inhomogeneities in Elasticity, London, Chapman and Hall, 1993.zbMATHGoogle Scholar
  24. 24.
    Maugin GA. “Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics”, J. Elast., 71, pp. 81–103, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Maugin GA. “Internal variables and dissipative structures”, J. Non-Equilib. Thermodyn., 15, pp. 173–192, 1990.CrossRefGoogle Scholar
  26. 26.
    Engelbrecht J, Berezovski A, Pastrone F, Braun M. “Waves in microstructured materials and dispersion”, Phil. Mag., 85, pp. 4127–4141, 2005.CrossRefGoogle Scholar
  27. 27.
    Engelbrecht J, Cermelli P, Pastrone F. “Wave hierarchy in microstructured solids”, In: Geometry, Continua and Microstructure, Maugin GA, (Ed.), Paris, Hermann Publ., 1999, pp. 99–111.Google Scholar
  28. 28.
    Metrikine AV, Askes H. “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure–Part 1: generic formulation”, Eur. J. Mech. A Solids, 21, pp. 555–572, 2002.zbMATHCrossRefGoogle Scholar
  29. 29.
    Metrikine AV. “On causality of the gradient elasticity models”, J. Sound Vibr. 297, pp. 727–742, 2006.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Santosa F, Symes WW. “A dispersive effective medium for wave propagation in periodic composites”, SIAM J. Appl. Math. 51, pp. 984–1005, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wang ZP, Sun CT. “Modeling micro-inertia in heterogeneous materials under dynamic loading”, Wave Motion, 36, pp. 473–485, 2002.zbMATHCrossRefGoogle Scholar
  32. 32.
    Metrikine AV, Askes H. “One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure–Part 2: static and dynamic response”, Eur. J. Mech. A Solids, 21, pp. 573–588, 2002.zbMATHCrossRefGoogle Scholar
  33. 33.
    Janno J, Engelbrecht J. “Waves in microstructured solids: Inverse problems”, Wave Motion, 43, pp. 1–11, 2005.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Janno J, Engelbrecht J. “An inverse solitary wave problem related to microstructured materials”, Inverse Probl., 21, pp. 2019–2034, 2005.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Arkadi Berezovski
    • 1
  • Jüri Engelbrecht
  • Gérard A. Maugin
  1. 1.Centre for Nonlinear StudiesInstitute of Cybernetics at Tallinn University of TechnologyEstonia

Personalised recommendations