Advertisement

Modelling of Size Effects with Gradient-Enriched Continuum Theories

  • Harm Askes
  • Inna M. Gitman
  • Angelo Simone
  • Lambertus J. Sluys
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)

Abstract

Size-dependent mechanical behaviour in simulations with a higher-order continuum material model is studied. It is shown that size effects occur in strain concentrations when a gradient elasticity theory is used. Similarly, size effects in the peak load can be modelled with a gradient damage theory. In both cases, a comparison is made with two scaling laws available in the literature: the Multi-Fractal Scaling Law of Carpinteri and the Size Effect Law of Bažant. Finally, the energy dissipation in Elementary Volumes is shown to be size-dependent, where again a gradient damage theory has been used. This implies that Representative Volumes do not exist when the dissipated energy is considered.

Keywords

Gradient elasticity gradient damage length scale strain concentrations peak loads representative volumes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.C. Aifantis. Int. J. Engng. Sci., 30:1279–1299, 1992.zbMATHCrossRefGoogle Scholar
  2. 2.
    E.C. Aifantis. Int. J. Fract., 95:299–314, 1999.CrossRefGoogle Scholar
  3. 3.
    H. Askes and E.C. Aifantis. Int. J. Fract., 117:347–358, 2002.CrossRefGoogle Scholar
  4. 4.
    Z.P. Bažant. Int. J. Sol. Struct., 37:69–80, 2000.zbMATHCrossRefGoogle Scholar
  5. 5.
    Z.P. Bažant. Int. J. Fract., 83:19–40, 1997.CrossRefGoogle Scholar
  6. 6.
    C. le Bellégo, J.F. Dubé, G. Pijaudier-Cabot, and B. Gérard. Eur. J. Mech. A/Sol., 22:33–46, 2003.Google Scholar
  7. 7.
    J. Carmeliet. Mech. Coh.-Frict. Mater., 4:1–16, 1999.CrossRefGoogle Scholar
  8. 8.
    A. Carpinteri, editor. Size-scale effects in the failure mechanisms of materials and structures. E. & F.N. Spon, London, 1996.Google Scholar
  9. 9.
    G. Efremidis, A. Carpinteri, and E.C. Aifantis. J. Mech. Beh. Mat., 12:95–105, 2001.Google Scholar
  10. 10.
    G. Efremidis, A. Carpinteri, and E.C. Aifantis. J. Mech. Beh. Mat., 12:107–120, 2001.Google Scholar
  11. 11.
    N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Acta Metall. Mater., 42:475–487, 1994.CrossRefGoogle Scholar
  12. 12.
    I.M. Gitman. Representative Volumes and multi-scale modelling of quasi-brittle materials. PhD Thesis, Delft University of Technology, 2006. http://www.library.tudelft.nl.
  13. 13.
    C. Iacono, L.J. Sluys, and J.G.M. van Mier. Comput. Meth. Appl. Mech. Engng., 195:7211–7222, 2006.zbMATHCrossRefGoogle Scholar
  14. 14.
    B.L. Karihaloo and Q.Z. Xiao. Sadhana, 27:449–459, 2002.Google Scholar
  15. 15.
    R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, and J.H.P. de Vree. Int. J. Numer. Meth. Engng., 39:3391–3403, 1996.Google Scholar
  16. 16.
    C.Q. Ru and E.C. Aifantis. Acta Mech., 101:59–68, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    H.T. Zhu, H.M. Zbib, and E.C. Aifantis. Acta Mech., 121:165–176, 1997.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Harm Askes
    • 1
  • Inna M. Gitman
  • Angelo Simone
  • Lambertus J. Sluys
  1. 1.Department of Civil and Structural EngineeringUniversity of SheffieldUnited Kingdom

Personalised recommendations