Contact Mechanics at the Insect-Plant Interface: How Do Insects Stick and How Do Plants Prevent This?

  • Elena V. Gorb
  • Stanislav N. Gorb
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)


Contacting surfaces in many insect attachment devices are subdivided into patterns of micro- or nanostructures with a high aspect ratio. This paper provides some explanations of the adhesion enhancement effect in such systems. However, attachment abilities of insects depend on the roughness and mechanical stability of the substrate features. Wax bloom of some plant surfaces causes a strong reduction of insect attachment. Four hypotheses of anti-adhesion mechanism of plant surfaces covered with epicuticular wax crystals are proposed, and two of them are experimentally supported.


Adhesion biotribology biomechanics functional surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arzt E, Gorb S, Spolenak R. “From micro to nano contacts in biological attachment devices”, Proc. Nat. Acad. Sci. USA, 100, pp. 10603–10606, 2003.CrossRefGoogle Scholar
  2. 2.
    Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T. “Defence by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil”, Zoology, 103, pp. 1–6, 2000.Google Scholar
  3. 3.
    Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H. “Classification and terminology of plant epicuticular waxes”, Bot. J. Linn. Soc., 126, pp. 237–260, 1998.Google Scholar
  4. 4.
    Betz O. “Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae)”, J. Exp. Biol., 205, pp. 1097–1113, 2002.Google Scholar
  5. 5.
    Bowden FP. “Adhäsion und Reibung”, Endeavour, 16, pp. 5–18, 1957.Google Scholar
  6. 6.
    Chung JY, Chaudhury MK. “Roles of discontinuities in bio-inspired adhesive pads”, J. R. Soc. Interface, 2, pp. 55–61, 2005.CrossRefGoogle Scholar
  7. 7.
    Creton C, Gorb S. “Sticky feet: from animals to materials”, MRS Bull., 32, pp. 466–468, 2007.Google Scholar
  8. 8.
    Dai Z, Gorb S, Schwarz U. “Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae)”, J. Exp. Biol., 205, pp. 2479–2488, 2002.Google Scholar
  9. 9.
    Duffey SS. “Plant glandular trichomes: their partial role in defence against insects”, Insects and the plant surface, Juniper BE, Southwood TRE. (eds.), London, Edward Arnold, pp. 151–172, 1986.Google Scholar
  10. 10.
    Federle W, Riehle M, Curtis ASG, Full RJ. “An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants”, Integr. Comp. Biol., 42, pp. 1100–1106, 2002.CrossRefGoogle Scholar
  11. 11.
    Gorb E, Gorb S. “Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces”, Entomol. Exp. Applicata, 105, pp. 13–28, 2002.CrossRefGoogle Scholar
  12. 12.
    Gorb E, Gorb S. ‘Combination of the surface profile and chemistry reduces the attachment of the beetle Gastrophysa viridula on the Rumex obtusifolius leaf surface”, Proceedings of the 5th Plant Biomechanics Conference, Salmén L. (ed.), Stockholm, Sweden, Vol. 2, Stockholm, pp. 537–542, 2006.Google Scholar
  13. 13.
    Gorb E, Gorb S. “Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination hypothesis”, Ecology and biomechanics: A mechanical approach to the ecology of animals and plants, Herrel A, Speck T, Rowe N. (eds.), Boca Raton, pp. 147–162, 2006.Google Scholar
  14. 14.
    Gorb E, Haas K, Henrich A, Enders S, Barbakadze N, Gorb S. “Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment”, J. Exp. Biol., 208, pp. 4651–4662, 2005.CrossRefGoogle Scholar
  15. 15.
    Gorb S. Attachment devices of insect cuticle, Dordrecht, Boston, London, Kluwer Academic Publishers, 2001.Google Scholar
  16. 16.
    Gorb SN “Uncovering insect stickiness: structure and properties of hairy attachment devices”, Am. Entomol., 51, pp. 31–35, 2005.Google Scholar
  17. 17.
    Gorb SN, Beutel RG. “Evolution of locomotory attachment pads of hexapods”, Naturwissenschaften, 88, pp. 530–534, 2001.CrossRefGoogle Scholar
  18. 18.
    Gorb S, Varenberg M, Peressadko A, Tuma J. “Biomimetic mushroom-shaped fibrillar adhesive microstructure”, J. R. Soc. Interface, 4, pp. 271–275, 2007.CrossRefGoogle Scholar
  19. 19.
    Ishii S. “Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface”, Appl. Ent. Zool., 22, pp. 222–228, 1987.Google Scholar
  20. 20.
    Jeffree CE. “The cuticle, epicuticular waxes and trichomes of plants, with references to their structure, functions and evolution”, Insects and the plant surface, Juniper BE, Southwood TRE. (eds.), London, Edward Arnold, pp. 23–64, 1986.Google Scholar
  21. 21.
    Johnson KL, Kendall K, Roberts AD. “Surface energy and the contact of elastic solids”, Proc. R. Soc. Lond. A, 324, pp. 301–313, 1971.CrossRefGoogle Scholar
  22. 22.
    Juniper BE. “Waxes on plant surfaces and their interactions with insects”, Waxes: chemistry, molecular biology and functions, Hamilton RJ. (ed.), West Ferry, Dundee, Oily, pp. 157–174, 1995.Google Scholar
  23. 23.
    Kosaki A, Yamaoka R. “Chemical composition of footprints and cuticula lipids of three species of lady beetles”, Jpn. J. Appl. Entomol. Zool., 40, pp. 47–53, 1996.Google Scholar
  24. 24.
    Levin DA. “The role of trichomes in plant defence”, Q. Rev. Biol., 48, pp. 3–15, 1973.CrossRefGoogle Scholar
  25. 25.
    Peressadko A, Gorb SN. “When less is more: experimental evidence for tenacity enhancement by division of contact area”, J. Adhesion, 80, 247–261, 2004.CrossRefGoogle Scholar
  26. 26.
    Peressadko A, Gorb S. “Surface profile and friction force generated by insects”, Proceedings of the 1st International Conference Bionik, Boblan I, Bannasch R. (eds.), Hannover, Germany, pp. 257–263, 2004.Google Scholar
  27. 27.
    Persson BNJ. “On the mechanism of adhesion in biological systems”, J. Chem. Phys., 118, 7614–7621, 2003.CrossRefGoogle Scholar
  28. 28.
    Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick N, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK. “Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites”, Nature, 399, pp. 761–763, 1999.CrossRefGoogle Scholar
  29. 29.
    Persson BNJ, Gorb S. “The effect of surface roughness on the adhesion of elastic plates with application to biological systems”, J. Chem. Phys., 119, pp. 11437–11444, 2003.CrossRefGoogle Scholar
  30. 30.
    Scherge M, Gorb SN. “Biological micro- and nanotribology”, Berlin, Springer, 2001.Google Scholar
  31. 31.
    Varenberg M, Peressadko A, Gorb S, Arzt E. “Effect of real contact geometry on adhesion”Appl. Phys. Lett., 89, N 121905, 2006.CrossRefGoogle Scholar
  32. 32.
    Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U. “Chemical composition of the attachment pad secretion of the locust Locusta migratoria”, Insect Biochem. Mol. Biol., 32, pp. 1605–1613, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Elena V. Gorb
    • 1
  • Stanislav N. Gorb
  1. 1.Evolutionary Biomaterials Group, Department of Thin Films and Biological SystemsMax Planck Institute for Metals ResearchGermany

Personalised recommendations