Advertisement

Fractal Geometry and Mechanics of Randomly Folded Thin Sheets

  • Alexander S. Balankin
  • Orlando Susarrey Huerta
Conference paper
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)

Abstract

This work is devoted to the statistical geometry of crumpling network and its effect on the geometry and mechanical properties of randomly folded materials. We found that crumpling networks in randomly folded sheets of different kinds of paper exhibit statistical self-similarity characterized by the universal fractal dimension DN = 1.83 ± 0.03. The balance of bending and stretching energy stored in the folded creases determines the fractal geometry of folded sheets displaying intrinsically anomalous self-similarity with the universal local fractal dimension Dl = 2.67 ± 0.05 and the material dependent global fractal dimension D < Dl. Moreover, we found that the entropic rigidity of crumpling network governs the mechanical behavior of randomly crumpled sheets under uniaxial compression.

Keywords

Folded matter fractal scaling mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood AJ, “Witten’s Lectures on Crumpling”, Physica A, 313, pp. 83–109, 2002.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Kramer EM, Witten TA, “Stress Condensation in Crushed Elastic Manifolds”, Physical Review Letters, 78, pp. 13083–1306, 1997.CrossRefGoogle Scholar
  3. 3.
    DiDonna BA, Witten TA, “Anomalous Strength of Membranes with Elastic Ridges”, Physical Review Letters, 87, pp. 2061051–2061054, 2001.CrossRefGoogle Scholar
  4. 4.
    Matan K, Williams RB, Witten TA, Nagel SR, “Crumpling a Thin Sheet”, Physical Review Letters, 88, pp. 0761011–0761014, 2002.CrossRefGoogle Scholar
  5. 5.
    Astrom JA, Timonen J., Karttunen M, “Crumpling of a Stiff Tethered Membrane”, Physical Review Letters, 93, pp. 2443011–2443014, 2004.Google Scholar
  6. 6.
    Blair DL, Kudrolli A, “Geometry of Crumpled Paper”, Physical Review Letters, 94, pp. 1661071–1661074, 2005.CrossRefGoogle Scholar
  7. 7.
    Sultan E, Boudaoud A, “Statistics of Crumpled Paper”, Physical Review Letters, 96, pp. 1361031–1361034, 2006.CrossRefGoogle Scholar
  8. 8.
    Vliegenthart GA, Gompper G, “Forced Crumpling of Self-avoiding Elastic Sheets”, Nature Materials, 96, pp. 1361031–1361034, 2006.Google Scholar
  9. 9.
    Balankin AS, Morales D, Susarrey O, Samayoa D, Trinidad JM, Marquez J, García R, “Self-Similar Roughening of Drying Wet Paper”, Physical Review E, 73, pp. 0651051–0651054, 2006.CrossRefGoogle Scholar
  10. 10.
    Balankin AS, Susarrey O, Cortes R, Samayoa D, Trinidad JM, Mendoza MA, “Intrinsically Anomalous Roughness of Randomly Crumpled Thin Sheets”, Physical Review E, 74, pp. 061601–061607, 2006.CrossRefGoogle Scholar
  11. 11.
    Balankin AS, Campos I, Martínez OA, Susarrey O, “Scaling Properties of Randomly Folded Plastic Sheets”, Physical Review E, 75, pp. 0511171–0511173, 2007.CrossRefGoogle Scholar
  12. 12.
    Balankin AS, Cortes R, Samayoa D, “Intrinsically Anomalous Self-Similarity of Randomly Folded Matter”, Physical Review E, 76, 0321011–0321014, 2007.Google Scholar
  13. 13.
    Gompper G, “Patterns of Stress in Crumpled Sheets” Nature, 386, pp. 439–441, 1997.CrossRefGoogle Scholar
  14. 14.
    Albuquerque AJ, Gomez MAF, “Stress Relaxation in Crumpled Surfaces”, Physica A, 310, pp. 377–383, 2002.CrossRefGoogle Scholar
  15. 15.
    Bowick MJ, Travesset A, “The Statistical Mechanics of Membranes”, Physics Reports, 344, pp. 255–308, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ramasco JJ, López JM, Rodríguez MA, “Generic Dynamic Scaling in Kinetic Roughening”, Physical Review Letters, 84, pp. 2199–2202, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexander S. Balankin
    • 1
  • Orlando Susarrey Huerta
  1. 1.Instituto Politécnico Nacional Ed. 5, 3piso, ESIMEAv. Politecnico NacionalMexico

Personalised recommendations