Skip to main content

Scaling Transformations in Solid Mechanics

  • Conference paper

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 10))

Abstract

First a brief historical overview of the development of scaling methods is given. Then it is argued that scaling in solid mechanics should not be restricted to just the equivalence of dimensionless parameters characterising the problem under consideration. A wealth of scaling approaches to solid mechanics is demonstrated on problems of contact and fracture mechanics. It is considered dimensional analysis and classic self-similarity, solutions described by quasi-homogeneous functions, statistical self-similarity, discrete self-similarity, parametric-homogeneity, and mathematical and physical fractals. It is shown that all these scalings are based on the use of either continuous or discrete groups of dilation of coordinates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt G.I. Scaling, Cambridge University Press, Cambridge, 2003.

    MATH  Google Scholar 

  2. Liu W.K., Karpov E.G., Park H.S. Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, New York, John Wiley & Sons., 2006.

    Google Scholar 

  3. Galileo G. Two New Sciences, 1632, English transl. In: Galileo Galilei. Two New Sciences, London, Prometheus Books, 1991.

    Google Scholar 

  4. Euler L. “Regula facilis pro dijudicanda firmitate pontis aliusve corporis similis ex cognita firmitate moduli”, Novi Commentarii Academiae scientiarum Imperialis Petropolitanae, No. 20, 271–285, 1776.

    Google Scholar 

  5. Arnold V.I. Private communication, 2007.

    Google Scholar 

  6. Kirpichev V.L. “On similitude at elastic phenomena”, J. Rus. Chem. Soc. Phys. Soc. Phys. Part. Div. I, 6(8), pp. 152–155, 1874.

    Google Scholar 

  7. Borodich F.M. “Scaling in multiple fracture and size effect”, In: Karihaloo B.L. (Ed.), IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, Dordrecht, Kluwer Academic Publishers, pp. 63–72, 2002.

    Google Scholar 

  8. Vaschy A. “Sur les lois de similitude en Physique”, Annales Télégraphiques (3e série), 19, 25–28, 1892.

    Google Scholar 

  9. Riabouchinsky D.P. “Méthode des variables de dimension zéro, et son application en aérodynamique”, L’Aérophile, 1 Septembre, pp. 407–408, 1911.

    Google Scholar 

  10. Federman A. “On some general methods of integration of partial differential equations of the first order”, Izvestiya St. Petersburgh Polytechn. Inst, 16, pp. 97–155, 1911.

    Google Scholar 

  11. Buckingham E. “On physically similar systems: Illustrations of the use of dimensional equations”, Phys. Rev., 4, pp. 345–376, 1914.

    Article  Google Scholar 

  12. Buckingham E. “Notes on the method of dimensions”, Phil. Mag. Ser. 6, 42, pp. 696–719, 1921.

    Article  Google Scholar 

  13. Ehrenfest-Afanassjewa T.A. “Dimensional analysis viewed from the stainpoint of the theory of similitudes”, Phil. Mag. Ser. 7, 1, pp. 257–272, 1926.

    Google Scholar 

  14. Borodich F.M. “Three-dimensional problems of contact of blunt bodies with continuous media”, Thesis (D.Sc.), Moscow, Moscow State University, pp. 1–283, 1990.

    Google Scholar 

  15. Borodich F.M. “Similarity methods in Hertz contact problems and their relations with the Meyer hardness test”, Technical Report TR/MAT/FMB/98-98, Glasgow, Glasgow Caledonian University, pp. 1–45, 1998.

    Google Scholar 

  16. Galanov B.A. “Approximate solution to some problems of elastic contact of two bodies”, Mech. Solids, 16, pp. 61–67, 1981.

    MathSciNet  Google Scholar 

  17. Borodich, F.M. “Similarity in the problem of contact between elastic bodies”, J. Appl. Math. Mech., 47, pp. 519–521, 1983.

    Article  MathSciNet  Google Scholar 

  18. Borodich F.M. “Use of the theory of similarity in the nonlinear problem of contact between an indenter and anisotropic metallic foundations”, In: Abstracts of Reports of All-Union Conference “Metal”-programme’s fulfillers (Eds. A.A. Bogatov et al.), Abakan, Krasnoyarskii Polytechnical Institute Press, 195–196, 1988.

    Google Scholar 

  19. Borodich F.M. “The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach)”, Int. J. Solids Struct., 30, pp. 1513–1526, 1993.

    Google Scholar 

  20. Borodich F.M. Galanov B.A. “Self-similar problems of elastic contact for non-convex punches”, JMPS, 50, pp. 2441–2461, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  21. Borodich F.M. “Contact problem of two prestressed halfspaces”, J. Appl. Mech. Tech. Phys., 25, pp. 324–326, 1984.

    Article  Google Scholar 

  22. Borodich F.M. “Modelling for elastic deformation of multilayer plates with small initial imperfections in the layers”, Ph.D Thesis, Moscow, Moscow State University, pp. 1–177, 1984.

    Google Scholar 

  23. Borodich F.M. “Hertz contact problems for an anisotropic physically nonlinear elastic medium”, Strength of Mater., 21, 1668–1676, 1989.

    Google Scholar 

  24. Borodich F.M., Keer L.M., Korach C.J. “Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes”, Nanotechnology, 14, pp. 803–808, 2003.

    Article  Google Scholar 

  25. Barenblatt G.I., Botvina, L.R. “A note concerning power-type constitutive equations of deformation and fracture of solids”, Int. J. Engng. Sci., 20, pp. 187–191, 1982.

    Google Scholar 

  26. Barenblatt G.I., Botvina L.R. “Self-similarity of the fatigue fracture; the damage accumulation”, Mecha. Solids, 18, pp. 88–92, 1983.

    Google Scholar 

  27. Borodich F.M. “Deformation properties of multilayer metallic stacks”, Mech. of Solids, 22, pp. 103–110, 1987.

    Google Scholar 

  28. Borodich,, F.M., Harris S.J., Keer L.M., “Self-similarity in abrasion of metals by nano-sharp asperities of hard carbon containing films”, Appl. Phys. Lett., 81, pp. 3476–3478, 2002.

    Article  Google Scholar 

  29. Borodich F.M., Harris S.J., Keer L.M., Cooper C.V. “Wear and abrasiveness of hard carbon-containing coatings under variation of the load”, Surf. Coatings Techn 179, pp. 78-–82, 2004.

    Article  Google Scholar 

  30. Borodich F.M. “Similarity properties of discrete contact between a fractal punch and an elastic medium”, C. r. Ac. Sc. (Paris), Ser. 2, 316, pp. 281–286, 1993.

    MATH  Google Scholar 

  31. Borodich F.M. “Some applications of the fractal parametric-homogeneous functions”, Fractals, 2, pp. 311–314, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  32. Borodich F.M. “Parametric homogeneity and non-classical self-similarity. I. Mathematical background. & II. Some applications”, Acta Mechanica, 131, pp. 27–45, 47–67, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  33. Mandelbrot B.B. “Is nature fractal?”, Science, 279, p. 783, 1998.

    Article  Google Scholar 

  34. Avnir D., Biham O., Lidar D., Malcai O. “Is the geometry of nature fractal?”, Science, 279, pp. 39–40, 1998.

    Article  Google Scholar 

  35. Borodich F.M. “Some fractal models of fracture”, J. Mech. Phys. Solids, 45, pp. 239–259, 1997.

    Article  MATH  Google Scholar 

  36. Falconer K.J. Fractal Geometry: Mathematical Foundations and Applications, John Wiley, Chichester, 1990.

    MATH  Google Scholar 

  37. Borodich F.M. “Fracture energy in a fractal crack propagating in concrete or rock”, Trans. (Doklady) Russian Akademy of Sciences: Earth Science Sections, 327, pp. 36–40, 1992.

    Google Scholar 

  38. Borodich F.M. “Self-similar models and size effect of multiple fracture”, Fractals, 9, pp. 17–30, 2001.

    Article  Google Scholar 

  39. Borodich F.M. “Fractals and fractal scaling in fracture mechanics”, Int. J. Fract., 95, pp. 239–259, 1999.

    Article  Google Scholar 

  40. Borodich F.M., Onishchenko D.A. “Similarity and fractality in the modelling of roughness by a multilevel profile with hierarchical structure”, Int. J. Solids Struct., 36, pp. 2585–2612, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  41. Sadovskii M.A. “On natural fragmentation of rocks”, Dokl. Akademii Nauk, 247, pp. 829–832, 1979.

    Google Scholar 

  42. Allègre C.J., LeMouel J.L., Provost A. “Scaling rules in rock fracture and possible implications for earthquake prediction”, Nature 297, pp. 47–49, 1982.

    Article  Google Scholar 

  43. Onishchenko D.A. “Scale-invariant distributions in the strength problem for stochastic systems with hierarchical structure”, Dokl. Akademii Nauk, 368, pp. 335–337, 1999.

    Google Scholar 

  44. Bonnet E., Bour O., Odling N.E., Davy P., Main I., Cowie P., Berkowitz B. “Scaling of fracture systems in geological media”, Revi. Geophys, 39, pp. 347–383, 2001.

    Google Scholar 

  45. Davy P., Sornette A., Sornette D. “Some consequences of a proposed fractal nature of continental faulting”, Nature, 348, pp. 56–58, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Borodich, F.M. (2009). Scaling Transformations in Solid Mechanics. In: Borodich, F. (eds) IUTAM Symposium on Scaling in Solid Mechanics. Iutam Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9033-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9033-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9032-5

  • Online ISBN: 978-1-4020-9033-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics