Skip to main content

Scaling of Effective Moduli of Generalised Continua

  • Conference paper
  • 1035 Accesses

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 10))

Abstract

We model materials with self-similar structure by a set of continua, CH, each representing the original material with all structural elements of sizes smaller than H. We then continue this sequence in a self-similar manner to H→ 0. The intersection of these continua gives a fractal F where all fields scale according to the power law. By considering scaling of the energy in linear elastic Cosserat continuum we find that if the classical elastic moduli scale with an exponent α, the Cosserat moduli scale with exponents α and α+2. Using this rule, we determine the dispersion relations for travelling waves and find the full set of the exponents for the cases of material with cracks and pores.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore CA, Gill J. “Fractals in Geomechanics”, Computer Methods and Advances in Geomechanics, Beer G, Booker JR, Carter JP (eds.), Balkema, Rotterdam, 1991, pp. 371–376.

    Google Scholar 

  2. Xie H, Sanderson DJ, Peacock DCP. “A fractal model and energy dissipation for en echelon fractures”, Engng Fract. Mech. vol. 48, no. 5, pp. 655–662, 1994.

    Article  Google Scholar 

  3. Panagiotopoulos PD, Panagouli O. “Mechanics of fractal bodies. Data compression using fractals”, Chaos Solitons Fractals, vol. 8, no. 2, pp. 253–267, 1997.

    Article  MATH  Google Scholar 

  4. Strichartz R. “Analysis on fractals”, Not. AMS, vol. 12, no. 10, pp. 1199–1208, 1999.

    MathSciNet  Google Scholar 

  5. Rupnowski P. “Calculations of J integrals around fractal defects in plates”, Int. J. Fract. vol.111, pp. 381–394, 2001.

    Article  Google Scholar 

  6. Carpinteri A, Cornetti P. “A fractional calculus approach to the description of stress and strain localization in fractal media”, Chaos Solitons Fractals, vol. 13, pp. 85–94, 2002.

    Article  MATH  Google Scholar 

  7. Zosimov VV, Lyamishev LM. “Fractals in wave processes”, Physics-Uspekhi, vol. 38, no. 4, pp. 347–384, 1995.

    Article  Google Scholar 

  8. Makris N “Generalized differentiation and the complex memory of structures”, Fractals, vol. 2 no. 2, pp. 315–320, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. Podubny I. Fractional Differential Equations, San-Diego, Boston, New York, London, Sydney, Tokyo, Toronto, Academic Press, 1999.

    Google Scholar 

  10. Gol’dstein RV, Mosolov AB. “Cracks with a fractal surface”, Sov. Phys. Dokl. vol. 36 no. 8, pp. 603–605, 1991.

    Google Scholar 

  11. Bazant ZP. “Scaling laws in mechanics of failure”, J. Engg Mech. vol. 119 no. 9, pp. 1828–1844, 1993.

    Article  Google Scholar 

  12. Carpinteri A. “Scaling laws and renormalization groups for strength and toughness of disordered materials”, Int J. Solids Struct. vol. 31, no. 3, pp. 291–302, 1994.

    Article  MATH  Google Scholar 

  13. Cherepanov GP, Balankin AS, Ivanova VS. “Fractal fracture mechanics – a review”, Engg. Fract. Mech. vol. 51, no. 6, pp. 997–1033, 1995.

    Article  Google Scholar 

  14. Borodich FM. “Some fractal models of fracture”, J. Mech. Phys. Solids, vol. 45, no. 2, pp. 239–259, 1997.

    Article  MATH  Google Scholar 

  15. Yavari A, Sarkani S, Moyer, Jr. ET. “The mechanics of self-similar and self-affine fractal cracks”, Int. J Fract. vol. 114, pp. 1–27, 2002.

    Article  Google Scholar 

  16. Dyskin AV. “Effective characteristics and stress concentrations in materials with self-similar microstructure”, Int. J. Solids Struct, vol. 42 no. 2, pp. 477–502, 2004.

    Article  Google Scholar 

  17. Borodich FM. “Fractals and fractal scaling in fracture mechanics”, Int. J Fract. vol. 95, pp. 239–259, 1999.

    Article  Google Scholar 

  18. Saouma VE, Fava G. “On fractals and size effects”, Int. J Fract. vol. 137, pp. 231–249, 2006.

    Article  Google Scholar 

  19. Dyskin AV. “Multifractal properties of self-similar stress distributions”, Philoso. Mag. vol. 86, no. 21–22, pp. 3117–3136, 2006.

    Article  Google Scholar 

  20. Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks. Handbook. Third edition. vol. II. New York: ASME Press, 1985.

    Google Scholar 

  21. Dyskin AV. “Continuum fractal mechanics of Earth’s crust”, Pure Appl. Geophys. vol. 161, pp. 1979–1989, 2004.

    Article  Google Scholar 

  22. Barenblatt GI, Botvina LR. “Application of the similarity method to damage calculation and fatigue crack growth studies”, Defects and Fracture Sih GC, Zorski H (eds.), Martinus Nijhoff Publishers 1980, pp. 71–79.

    Google Scholar 

  23. Achieser NI. Theory of Approximation. New York, Frederic Unger Publ. Co, 1956.

    MATH  Google Scholar 

  24. Nowacki W. Theoria Spr¸zystości. Warszawa, Państwowe Wydawnictwo Naukowe, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dyskin, A., Pasternak, E. (2009). Scaling of Effective Moduli of Generalised Continua. In: Borodich, F. (eds) IUTAM Symposium on Scaling in Solid Mechanics. Iutam Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9033-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9033-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9032-5

  • Online ISBN: 978-1-4020-9033-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics