Scaling Laws for Properties of Materials with Imperfect Interfaces

  • J. Wang
  • B.L. Karihaloo
  • H.L. Duan
Conference paper
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)


Surfaces/interfaces have a profound effect on the properties of nanostructured and heterogeneous materials due to the large ratio of surface/interface atoms to the bulk. Imperfect interfaces widely exist in conventional composites and nanostructured materials. This paper shows that when imperfect interfacial bonding conditions are taken into account, some intrinsic length scales emerge. Thus, in contrast to the perfectly-bonded interfaces, the effective properties of heterogeneous materials containing inhomogeneities with imperfect interfaces become dependent upon the size of the inhomogeneities. This size-dependence is shown to be captured by simple scaling laws depending upon the type of the interface imperfection.


Surface/interface stress linear spring model high/low conducting interface effective elastic constants effective conductivities size effect scaling laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benveniste, Y., 1987, Effective-conductivity of composites with a thermal contact resistance between the constituents – nondilute case, J. Appl. Phys. 61: 2840–2843.CrossRefGoogle Scholar
  2. 2.
    Cuenot, S., Frétigny, C., Demoustier-Champagne, S., and Nysten, B., 2004, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phys. Rev. B 69: 165410.CrossRefGoogle Scholar
  3. 3.
    Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L., 2005, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53: 1574–1596.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L., 2005, Eshelby formalism for nano-inhomogeneities, Proc. R. Soc. A 461: 3335–3353.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Duan, H. L., Wang, J., Karihaloo, B. L., and Huang, Z. P., 2006, Nanoporous materials can be made stiffer than non-porous counterparts by surface modification, Acta Mater. 54: 2983–2990.CrossRefGoogle Scholar
  6. 6.
    Duan, H. L., Yi, X., Huang, Z. P., and Wang, J., 2007, A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II – application and scaling laws,Mech. Mater. 39: 94–103.CrossRefGoogle Scholar
  7. 7.
    Duan, H. L., and Karihaloo, B. L., 2007, Thermoelastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections, J. Mech. Phys. Solids. 55: 1036–1052.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Duan, H. L., and Karihaloo, B. L., 2007, Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions, Phys. Rev. B. 75: 064206.CrossRefGoogle Scholar
  9. 9.
    Gao, H., Ji, B., Jäger, I. L., Arzt, E., and Fratzl, P., 2003, Materials become insensitive to flaws at nanoscale: lessons from nature, Proc. Natl. Acad. Sci. 100: 5597–5600.CrossRefGoogle Scholar
  10. 10.
    Garrett, K. W., and Rosenber, H. M., 1974, Thermal-conductivity of epoxy-resin-powder composite-materials, J. Phys. D-Appl. Phys. 7: 1247–1248.CrossRefGoogle Scholar
  11. 11.
    Gleiter, H., 2000, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48: 1–29.CrossRefGoogle Scholar
  12. 12.
    Gurtin, M. E., and Murdoch, A. I., 1975, A continuum theory of elastic material surfaces, Arch. Rat. Mech. Anal. 57: 291–323.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hashin, Z., 1991, Thermoelastic properties of particulate composites with imperfect interface, J. Mech. Phys. Solids 39: 745–762.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jing, G. Y., Duan, H. L., Sun, X. M., Zhang, Z. S., Xu, J., Li, Y. D., Wang, J., and Yu, D. P., 2006, Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Phys. Rev. B 73: 235409.CrossRefGoogle Scholar
  15. 15.
    Kapitza, P.L., 1941, Collected papers of P. L. Kapitza (ed. D. ter Haar), vol. 2, P. 581. Pergamon: Oxford. (Reprinted 1965).Google Scholar
  16. 16.
    Karihaloo, B. L., 1979, Impossibility of comminuting small particles by compression, Nature 279: 169–170.Google Scholar
  17. 17.
    Lipton, R., 1997, Variational methods, bounds, and size effects for composites with highly conducting interface. J. Mech. Phys. Solids 45: 361–384.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lipton, R., and Talbot, D. R. S., 2001, Bounds for the effective conductivity of a composite with an imperfect interface, Proc. R. Soc. A 457: 1501–1517.zbMATHCrossRefGoogle Scholar
  19. 19.
    Martin, C. R., and Siwy, Z., 2004, Molecular filters-pores within pores, Nature Mater. 3: 284–285.CrossRefGoogle Scholar
  20. 20.
    Masuda, H., and Fukuda, K., 1995, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268: 1466–1468.CrossRefGoogle Scholar
  21. 21.
    Miller, R. E., and Shenoy, V. B., 2000, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11: 139–147.CrossRefGoogle Scholar
  22. 22.
    Miloh, T., and Benveniste, Y., 1999, On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proc. R. Soc. A. 455: 2687–2706.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Murdoch, A. I., 1976, Thermodynamical theory of elastic-material interfaces, Quart. J. Mech. Appl. Math. 29: 245–275.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Murdoch, A. I., 2005, Some fundamental aspects of surface modeling, J. Elast. 80: 33–52.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nan, C. W., and Birringer, R., 1998, Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model, Phys. Rev. B 57: 8264–8268.CrossRefGoogle Scholar
  26. 26.
    Nan, C. W., Xiao L. P., and Birringer, R., 1997, Inverse problem for composites with imperfect interface: determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters, J. Am. Ceram. Soc. 83: 848–854.CrossRefGoogle Scholar
  27. 27.
    Povstenko, Y. Z., 1993, Theoretical investigation of phenomena caused by heterogeneous surface-tension in solids, J. Mech. Phys. Solids 41: 1499–1514.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sharma, P., Ganti, S., and Bhate, N., 2003, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82: 535–537.CrossRefGoogle Scholar
  29. 29.
    Torquato, S., and Rintoul, M. D., 1995, Effect of the interface on the properties of composite media, Phys. Rev. Lett. 75: 4067–4070 .CrossRefGoogle Scholar
  30. 30.
    Wang, J., Duan, H. L., Zhang, Z., and Huang, Z. P., 2005, An anti-interpenetration model and connections between interface and interphase models in particle-reinforced composites, Int. J. Mech. Sci. 47: 701–718.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Duan, H. L., Huang, Z. P., and Karihaloo, B. L., 2006, A scaling law for properties of nano-structured materials, Proc. R. Soc. A 462: 1355–1363.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Wang
    • 1
  • B.L. Karihaloo
  • H.L. Duan
  1. 1.LTCS and College of Engineering, Peking UniversityP. R. China

Personalised recommendations