Skip to main content

Solid-State 13C Nuclear Magnetic Resonance Characterisation of Humic Acids Extracted from Amazonian Dark Earths (Terra Preta De Índio)

  • Chapter
Amazonian Dark Earths: Wim Sombroek's Vision
  • 2044 Accesses

The environmental organic matter is the link between the biosphere, geosphere, hydrosphere and atmosphere and is fundamental for ecosystem sustainability. Estimates of the total mass of organic carbon in soils are in the range of 1.22 × 1018g (Sombroek et al. 1993) to 2.456 × 1018 g (Batjes 1996). This reservoir is at least three times greater than all organic materials above the earth's surface, and the way the soil sequestered carbon is managed can have significant influences the levels of atmospheric CO2. Estimates of the amounts of fossil organic carbon (gas, oil, coal etc.) are considerably greater, of the order of 4 × 1018 g (Falkowski et al. 2000; Janzen 2004). An increase of carbon improves the fertility of soil, especially in tropical conditions, and thus increases the vegetal biomass that this soil can support.

The soil carbon stock represents a continuous process of deposition (5.67 × 1016g C year−1), in the form of vegetal and animal residues, and decomposition (with emissions of 5.50 × 1016 g C year−1). The deposition and decomposition fluxes are not equal because of the inputs of fossil fuel carbon (5 × 1015 g C year−1). However, fossil fuel carbon emissions are one order of magnitude less than that due to the decomposition of natural soil organic matter (United States 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldock JA, Oades JM, Vassalo AM, Wilson MA (1990) Solid-state CP/MAS13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose. Aust J Soil Res 28:213–225

    Article  CAS  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassalo AM, Wilson MA (1992) Aspect of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy. Biogeochemistry 16:1–42

    CAS  Google Scholar 

  • Barančíková G, Senesi N, Brunetti G (1997) Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 78:251–266

    Article  Google Scholar 

  • Barton DHR, Schnitzer M (1963) A new experimental approach to the humic acid problem. Nature 198:217–218

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Benites VM, Mendonça ES, Schaefer CEGR, Novotny EH, Reis EL, Ker JC (2005) Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127:104–113

    Article  CAS  Google Scholar 

  • Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P (1999) Stability of elemental carbon in a savanna soil. Global Biogeochem Cy 13:923–932

    Article  CAS  Google Scholar 

  • Borin M, Menini C, Sartori L (1997) Effects of tillage systems on energy and carbon balance in north-eastern Italy. Soil Till Res 40:209–226

    Article  Google Scholar 

  • Catroux G, Schnitzer M (1987) Chemical, spectroscopic, and biological characteristics of the organic matter in particle size fractions separated from an Aquoll. Soil Sci Soc Am J 51:1200–1207

    CAS  Google Scholar 

  • Clapp CE, Hayes MHB, Simpson AJ, Kingery WL (2005) The chemistry of soil organic matter. In: Tabatabai MA, Sparks DL (eds) Chemical Processes in Soils. American Society of Agronomy, Madison, WI, pp. 1–150

    Google Scholar 

  • Conte P, Piccolo A, van Lagen B, Buurman P, de Jager PA (1997) Quantitative aspects of solid-state13C NMR spectra of humic substances from soils of volcanic systems. Geoderma 80:327–338

    Article  CAS  Google Scholar 

  • Cook RL (2004) Coupling NMR to NOM. Anal Bioanal Chem 378:1484–1503

    Article  CAS  Google Scholar 

  • Costa ML, Kern DC (1999) Geochemical signatures of tropical soils with archaeological black earth in the Amazon, Brazil. J Geochem Explor 66:369–385

    Article  Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Sci 166:833–847

    Article  CAS  Google Scholar 

  • Druffel ERM (2004) Comments on the importance of black carbon in the global carbon cycle. Mar Chem 92:197–200

    Article  CAS  Google Scholar 

  • Dudley RL, Fyfe CA (1982) Evaluation of the quantitative reliability of the 13C CP/MAS technique for the analysis of coals and related materials. Fuel 61:651–657

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: A test of our knowledge of earth as a system. Science 290:291–296

    Article  CAS  Google Scholar 

  • FAO (1990) Soil map of the world. FAO, Rome

    Google Scholar 

  • Fernandes MB, Skjemstad JO, Johnson BB, Wells JD, Brooks P (2003) Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere 51:785–795

    Article  CAS  Google Scholar 

  • Freitas JCC, Bonagamba TJ, Emmerich FG (1999)13C high-resolution solid-state NMR study of peat carbonization. Energ Fuel 13:53–59

    Article  CAS  Google Scholar 

  • Freitas JCC, Emmerich FG, Cernicchiaro GRC, Sampaio LC, Bonagamba TJ (2001) Magnetic susceptibility effects on C-13 MAS NMR spectra of carbon materials and graphite. Solid State Nucl Magn Reson 20:61–73

    Article  CAS  Google Scholar 

  • Fründ R, Lüdemann H-D (1989) The quantitative analysis of solution- and CPMAS-C-13 NMR spectra of humic material. Sci Total Environ 81/82:157–168

    Article  Google Scholar 

  • Glaser B, Amelung W (2003) Pyrogenic carbon in native grassland soils along a climosequence in North America. Global Biogeochem Cy 17:1064

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: The use of ben-zenecarboxylic acids as specific markers. Org Geochem 29:811–819

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal — a review. Biol Fert Soils 35:219–230

    Article  CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Study of free and occluded particulate organic-matter in soils by solid-state C-13 CP/MAS NMR-spectroscopy and scanning electron-microscopy. Aust J Soil Res 32:285–309

    Article  CAS  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004a) The effect of fire on soil organic matter — a review. Environ Intl 30:855–870

    Article  CAS  Google Scholar 

  • González-Pérez M, Martin-Neto L, Saab SC, Novotny EH, Milori D, Bagnato VS, Colnago LA, Melo WJ, Knicker H (2004b) Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, C-13 NMR, FTIR and fluorescence spectroscopy. Geoderma 118:181–190

    Article  CAS  Google Scholar 

  • González-Vila FJ, Lentz H, Lüdemann H-D (1976) FT-13C nuclear magnetic resonance spectra of natural humic substances. Biochem Biophys Res Commun 72:1063–1070

    Article  Google Scholar 

  • Guggenberger G, Christensen BT, Zech W (1994) Land-use effects on the composition of organic matter in particle-size separates of soil: I. lignin and carbohydrate signature. Eur J Soil Sci 45:449–458

    Article  CAS  Google Scholar 

  • Gustafsson O, Bucheli TD, Kukulska Z, Andersson M, Largeau C, Rouzaud JN, Reddy CM, Eglinton TI (2001) Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochem Cy 15:881–890

    Article  CAS  Google Scholar 

  • Hagemeyer A, Van der Putten D, Spiess HW (1991) The use of composite pulses in the TOSS experiment. J Magn Reson 92:628–630

    CAS  Google Scholar 

  • Hatcher PG, Schnitzer M, Dennis LW, Maciel GE (1981) Aromaticity of humic substances in soils. Soil Sci Soc Am J 45:1089–1094

    CAS  Google Scholar 

  • Hemminga MA, Buurman P (1997) Editorial: NMR is soil science. Geoderma 80:221–224

    Article  Google Scholar 

  • Hu WG, Mao JD, Xing BS, Schmidt-Rohr K (2000) Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ Sci Technol 34:530–534

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1989) Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53:1695–1701

    CAS  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems — a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1985) Trace Elements in Soils and Plants. 3rd edition, CRC, Boca Raton, FL

    Google Scholar 

  • Kämpf N, Woods WI, Sombroek W, Kern DC, Cunha TJF (2003) Classification of Amazonian Dark Earths and other ancient anthropic soils. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian Dark Earths: Origin, Properties, Management. Kluwer, Dordrecht, pp. 77–104

    Google Scholar 

  • Kern DC, Kämpf N (1989) Antigos assentamentos indígenas na formação de solos com terra preta arqueológica na região de Oriximiná, Pará. R Bras Ci Solo 13:219–225

    CAS  Google Scholar 

  • Kern DC, D'Aquino G, Rodrigues TE, Frazão FJL, Sombroek W, Myers TP, Neves EG (2003) Distribution of Amazonian Dark Earths in the Brazilian Amazon. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian Dark Earths: Origin, Properties, Management. Kluwer, Dordrecht, pp. 51–76

    Google Scholar 

  • Kinchesh P, Powlson DS, Randall EW (1995) 13C NMR studies of organic matter in whole soils: I. Quantitation possibilities. Eur J Soil Sci 46:125–138

    Article  CAS  Google Scholar 

  • Kingery WL, Simpson AJ, Hayes MHB, Locke MA, Hicks RP (2000) The application of multidimensional NMR to the study of soil humic substances. Soil Sci 165:483–494

    Article  CAS  Google Scholar 

  • Knicker H, Totsche KU, Almendros G, González-Vila FJ (2005a) Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material. Org Geochem 36:1359–1377

    Article  CAS  Google Scholar 

  • Knicker H, González-Vila FJ, Polvillo O, González JA, Almendros G (2005b) Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol Biochem 37:701–718

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Zech W, Hatcher PG (1991) Chemical structural studies of forest soil humic acids: Aromatic carbon fraction. Soil Sci Soc Am J 55:241–247

    Google Scholar 

  • Kramer RW, Kujawinski EB, Hatcher PG (2004) Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 38:3387–3395

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM (2002) Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance. J Environ Qual 31:431–436

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Madari BE, Sombroek WG, Woods WI (2004) Research on anthropogenic Dark Earth soils. Could it be a solution for sustainable agricultural development in the Amazon? In: Glaser B, Woods WI (eds) Amazonian Dark Earths: Explorations in Space and Time. Springer, Heidelberg, pp. 169–182

    Google Scholar 

  • Malcolm RL (1989) Application of solid-state 13C N.M.R. spectroscopy to geochemical studies of humic substances. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic Substances II. In Search of Structure. Wiley, Chichester, pp. 339–372

    Google Scholar 

  • Mann CC (2002) The real dirt on rainforest fertility. Science 297:920–923

    Article  CAS  Google Scholar 

  • Mao JD, Schmidt-Rohr K (2003) Recoupled long-range C-H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings. J Magn Reson 162:217–227

    Article  CAS  Google Scholar 

  • Mao J-D, Schmidt-Rohr K (2004) Accurate quantification of aromaticity and nonprotonated aromatic carbon fraction in natural organic matter by 13C solid-state nuclear magnetic resonance. Environ Sci Technol 38:2680–2684

    Article  CAS  Google Scholar 

  • Mao JD, Hundal LS, Schmidt-Rohr K, Thompson ML (2003) Nuclear magnetic resonance and diffuse-reflectance infrared Fourier transform spectroscopy of biosolids-derived biocolloidal organic matter. Environ Sci Technol 37:1751–1757

    Article  CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    Article  CAS  Google Scholar 

  • Newman RH, Tate KR (1984) Use of alkaline soil extracts for 13C NMR characterization of humic substances. J Soil Sci 35:47–54

    Article  CAS  Google Scholar 

  • Newman RH, Tate KR, Barron PF, Wilson MA (1980) Towards a direct, non-destructive method of characterising soil humic substances using 13C NMR. J Soil Sci 31:623–631

    Article  CAS  Google Scholar 

  • Neyroud JA, Schnitzer M (1972) The chemistry of high molecular weight fulvic acid fractions. Can J Chem 52:4123–4132

    Article  Google Scholar 

  • Novotny EH, Hayes MHB, deAzevedo ER, Bonagamba TJ (2006a) Characterisation of black carbon-rich samples by C-13 solid-state nuclear magnetic resonance. Naturwissenschaften 93:447–450

    Article  CAS  Google Scholar 

  • Novotny EH, Knicker H, Colnago LA, Martin-Neto L (2006b) Effect of residual vanadyl on the spectroscopic analysis of humic acids. Org Geochem 37:1562–1572

    Article  CAS  Google Scholar 

  • Novotny EH, deAzevedo ER, Bonagamba TJ, Cunha TJF, Madari BE, Benites VM, Hayes MHB (2007) Studies of the compositions of humic acids from Amazonian Dark Earth soils. Environ Sci Technol 41:400–405

    Article  CAS  Google Scholar 

  • Olk DC, Cassman KG, Fan TWM (1995) Characterization of two humic acids fractions from a calcareous vermiculitic soil: Implications for the humification process. Geoderma 65:195–208

    Article  CAS  Google Scholar 

  • Pabst E (1992) Critérios de distinção entre terra preta e latossolo na região de Belterra e os seus significados para a discussão pedogenética. Bol Mus Par Emílio Goeldi Série Antropol 7:5–19

    Google Scholar 

  • Petsch ST, Smernik RJ, Eglinton TI, Oades JM (2001) A solid state 13C-NMR study of kerogen degradation during black shale weathering. Geochim Cosmochim Ac 65:1867–1882

    Article  CAS  Google Scholar 

  • Piccolo A (1999) Atmospheric CO2 and alteration of global climate. In: Resumos do 3o Encontro Brasileiro sobre Substâncias Húmicas, Universidade Federal de Santa Maria, Santa Maria, Brazil, p. 145

    Google Scholar 

  • Piccolo A, Mbagwu JSC (1994) Humic substances and surfactants effects on the stability of two tropical soils. Soil Sci Soc Am J 58:950–955

    Article  CAS  Google Scholar 

  • Ponomarenko E V, Anderson DW (2001) Importance of charred organic matter in black chernozem soils of Saskatchewan. Can J Soil Sci 81:285–297

    Google Scholar 

  • Preston CM (1996) Applications of NMR to soil organic matter analysis: History and prospects. Soil Sci 161:144–166

    Article  CAS  Google Scholar 

  • Preston CM, Blackwell BA (1985) Carbon-13 nuclear magnetic resonance for a humic and a fulvic acid: Signal-to-noise optimazation, quantitation, and spin echo techniques. Soil Sci 139:88–96

    Article  CAS  Google Scholar 

  • Preston CM, Newman RH, Rother P (1994) Using CP-MAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. Soil Sci 157:26–35

    Article  CAS  Google Scholar 

  • Raleigh DP, Kolbert AC, Griffin RG (1990) The effect of experimental imperfections on TOSS spectra. J Magn Reson 89:1–9

    CAS  Google Scholar 

  • Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Till Res 41:105–118

    Article  Google Scholar 

  • Rodrigues TE (1996) Solos da Amazônia. In: Alvarez VH, Fontes LEF, Fontes MPF (eds) O solo nos grandes domínios morfoclimáticos do Brasil. Sociedade Brasileira de Ciência do Solo, Viçosa, pp. 19–60

    Google Scholar 

  • Roscoe R, Buurman P, Velthorst EJ, Vasconcellos CA (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol. Geoderma 104:185–202

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem Cy 14:777–793

    Article  CAS  Google Scholar 

  • Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1996) Impact of brown coal dust on the organic matter in particle-size fractions of a Mollisol. Org Geochem 25:29–39

    Article  CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50:351–365

    Article  Google Scholar 

  • Schnitzer M (1991) Soil organic matter — the next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  • Schnitzer M, Khan SU (1978) Soil Organic Matter. Elsevier, Amsterdam

    Google Scholar 

  • Senesi N, Miano TM, Brunetti G (1996) Humic-like substances in organic amendments and effects on native soil humic substances. In: Piccolo A (ed) Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, pp. 531–593

    Chapter  Google Scholar 

  • Simpson AJ, Song GX, Smith E, Lam B, Novotny EH, Hayes MHB (2007) Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectros-copy. Environ Sci Technol 41:876–883

    Article  CAS  Google Scholar 

  • Simpson MJ, Hatcher PG (2004a) Overestimates of black carbon in soils and sediments. Naturwissenschaften 91:436–440

    Article  CAS  Google Scholar 

  • Simpson MJ, Hatcher PG (2004b) Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy. Org Geochem 35:923–935

    Article  CAS  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    Article  CAS  Google Scholar 

  • Skjemstad JO, Taylor JA, Smernik RJ (1999) Estimation of charcoal (char) in soils. Commun Soil Sci Plant Anal 30:2283–2298

    Article  CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249–1255

    CAS  Google Scholar 

  • Smernik R (2007) The influence of soil charcoal on the sorption of organic molecules. Proceedings of International Agrichar Initiative (IAI) 2007 Conference, IAI, Terrigal, Australia, p. 25

    Google Scholar 

  • Smernik RJ, Oades JM (2000) The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 1. Model systems and the effects of paramagnetic impurities. Geoderma 96:101–129

    Article  CAS  Google Scholar 

  • Smernik RJ, Oades JM (2003) Spin accounting and RESTORE — two new methods to improve quantitation in solid-state C-13 NMR analysis of soil organic matter. Eur J Soil Sci 54:103–116

    Article  CAS  Google Scholar 

  • Smernik RJ, Baldock JA, Oades JM (2002a) Impact of remote protonation on C-13 CPMAS NMR quantitation of charred and uncharred wood. Solid State Nucl Magn Reson 22:71–82

    Article  CAS  Google Scholar 

  • Smernik RJ, Baldock JA, Oades JM, Whittaker AK (2002b) Determination of T1ρH relaxation rates in charred and uncharred wood and consequences for NMR quantitation. Solid State Nucl Magn Reson 22:50–70

    Article  CAS  Google Scholar 

  • Smith NJH (1980) Anthrosols and human carrying capacity in Amazonia. Ann Assoc Am Geogr 70:553–566

    Article  Google Scholar 

  • Sombroek WG (1966) Amazon soils. A reconnaissance of the soils of the Brazilian Amazon region. Master's thesis, Onderzoekingen Verslagen van Landvouwkundige, Wageningen, The Netherlands

    Google Scholar 

  • Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426

    Google Scholar 

  • Stevenson FJ (1994) Humus Chemistry: Genesis, Composition, Reactions. 2nd edition, Wiley, New York

    Google Scholar 

  • Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166:858–871

    Article  CAS  Google Scholar 

  • United States (1999) Carbon sequestration research and development. Office of Science, Office of Fossil Energy, U.S. Dept. of Energy, Washington, DC

    Google Scholar 

  • Wang Z-D, Gamble DS, Langford CH (1990) Interaction of atrazine with Laurentian fulvic acid: Binding and hydrolysis. Anal Chim Acta 232:181–188

    Article  CAS  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Wilson MA (1990) Application of nuclear magnetic resonance spectroscopy to organic matter whole soils. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic Substances in Soil and Crop Sciences: Selected Readings. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 221–260

    Google Scholar 

  • Wilson MA, Pugmire RJ, Zilm KW, Goh KM, Heng S, Grant D (1981) Cross-polarization 13C NMR spectroscopy with “magic angle” spinning characterizes organic matter in whole soils. Nature 294:648–650

    Article  CAS  Google Scholar 

  • Wolbach WS, Anders E (1989) Elemental carbon in sediments: Determination and isotopic analysis in the presence of kerogen. Geochim Cosmochim Acta 53:1637–1647

    Article  CAS  Google Scholar 

  • Woods WI, McCann JM (1999) The anthropogenic origin and persistence of Amazonian dark earths. Yearb Conf Latin Am Geogr 25:7–14

    Google Scholar 

  • Woods WI, McCann JM (2001) El origin y persistencia de las tierras negras de la Amazonía. In: Hiraoka M, Mora S (eds) Desarrollo sostenible em la Amazonía. Mito o realidad? Abya-Yala, Quito-Equador, pp. 23–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EH Novotny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Novotny, E., Bonagamba, T., de Azevedo, E., Hayes, M. (2009). Solid-State 13C Nuclear Magnetic Resonance Characterisation of Humic Acids Extracted from Amazonian Dark Earths (Terra Preta De Índio). In: Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A., Rebellato, L. (eds) Amazonian Dark Earths: Wim Sombroek's Vision. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9031-8_21

Download citation

Publish with us

Policies and ethics