Skip to main content

Acquisition Systems

  • Chapter
  • First Online:
Basics of Geomatics
  • 4146 Accesses

Abstract

The technique of image acquisition of the terrestrial surface can be applied using tools on board different platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Borengasser M., Hungate W.S., Watkins R.L., 2008, Hyperspectral Remote Sensing, Principles and Applications. CRC Press Taylor & Francis Group, London, n.L1654, ISBN: 978-1-56670-654-4.

    Google Scholar 

  • Chen C.H., 2007, Image Processing for Remote Sensing. CRC Press, Taylor & Francis Group, 400 pp, ISBN: 978-1 4200-6664-7.

    Google Scholar 

  • ESA, 2008, The Living Planet Programme, new ed. European Space Agency.

    Google Scholar 

  • Harding D.J., 2000, Principles of Airborne Laser Altimeter Terrain Mapping, NASA’s Goddard Space Flight Center, Greenbelt, USA, March 17, 2000.

    Google Scholar 

  • NASA, National Aeronautics Space Administration, 1993, EOS References Handbook. Washington DC, USA.

    Google Scholar 

  • Paine D.D., Kiser J.D., 2004, Aerial Photography and Image Interpretation, 2nd ed. John Wiley & Sons, Inc., New York, 632 p.

    Google Scholar 

Bibliography

  • Ackermann A., 1999, Airborne laser scanning – present status and future expectations. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3): 64–67.

    Article  Google Scholar 

  • Almer A., Schnabel T., Raggam J., Gutjahr K., van Dahl M., 2007, Rapid information flow within a crisis management system. Proceedings of the 27th EARSeL Symposium, GeoInformation in Europe, M.A. Gomarasca (Ed.), Millpress, The Netherlands, pp. 455–462, ISBN 9789059660618.

    Google Scholar 

  • Askey P., 2004, Sony Cybershot DSC-F828 Review.

    Google Scholar 

  • Asrar G., 1985, Theory and Applications of Optical Remote Sensing. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Babington-Smith C., 1957, Air Spy: The Story of Photo Intelligence in World War II. Harper, New York.

    Google Scholar 

  • Babington-Smith C., 1985,ir Spy: The Story of Photo Intelligence in World War II. American Society for Photogrammetry and Remote Sensing, Falls Church, Virginia (reprint).

    Google Scholar 

  • Baltsavias E.P., 1999, A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 83–94.

    Article  Google Scholar 

  • Baltsavias E.P., 1999, Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3): 199–214.

    Article  Google Scholar 

  • Bendea H., Chiabrando F., Giulio Tonolo F., Marenchino D., 2007, Mapping of archaeological areas using a low-cost UAV: the Augusta Bagiennorum Test Site. XXI International CIPA Symposium, 01–06 October 2007, Athens, Greece.

    Google Scholar 

  • Bendea H., Boccardo P., Dequal S., Giulio Tonolo F., Marenchino D., 2007, New technologies for mobile mapping. 5th International Symposium on Mobile Mapping Technology MMT'07, Padua, Italy, 28–31 May 2007.

    Google Scholar 

  • Bornaz L., Dequal S., 2004, The solid image: An easy and complete way to describe 3D objects. In: Volume XXXV part B5. XXth ISPRS congress. Istanbul. 12–23 July 2004, pp. 183–188. ISBN/ISSN: 1682–1777.

    Google Scholar 

  • Burrows W., Deep Black E., 1986, Space Espionage and National Security. Random House, New York.

    Google Scholar 

  • Colwell R.N., 1983, Manual of Remote Sensing (Vol. 1 and 2). American Society of Photogrammetry, Falls Church, Virginia, USA.

    Google Scholar 

  • Eisenbeiss H., 2004, A mini unmanned aerial vehicle (UAV): system overview and image acquisition. International Workshop on Processing and Visualization Using High-Resolution Imagery, 18–20 November 2004, Pitsanulok, Thailand.

    Google Scholar 

  • ESA, European Space Agency, 1995, Earth Observation Missions, ESRIN, Frascati.

    Google Scholar 

  • ESA, European Space Agency, 1998, Envisat-1: Mission and System Summary, ESTEC. Hollandia Offset, Noordwijk.

    Google Scholar 

  • Eurimage 1996, ERS, JERS-1 and Resurs-01 Missions, Training Courses on ERS SAR and Other Complementary Spaceborne Sensors. ESA-ESRIN, Frascati.

    Google Scholar 

  • Filin S., Pfeifer N., 2006, Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2): 71–80.

    Article  Google Scholar 

  • Flood M., Gutelius B., 1997, Commercial implication of topographic terrain mapping using scanning airborne laser radar. Photogrammetric Engineering and Remote Sensing, 63: 327.

    Google Scholar 

  • Fowler R.A., 2000a, The Lowdown on LIDAR, Earth Observation Magazine, Marzo, p. 27.

    Google Scholar 

  • Fowler, R.A., 2000b, LIDAR for Flood Mapping. Earth Observation Magazine, Luglio.

    Google Scholar 

  • Fowler, R.A., 2000c, LIDAR Versus RADAR. Earth Observation Magazine, Settembre, p. 29.

    Google Scholar 

  • Fritz, L.W., 1996, The era of commercial Earth observation satellite. Photogrammetric Engineering and Remote Sensing, 1: 39–45.

    Google Scholar 

  • Fussel J., Rundquist D., Harrington J.A., 1986, On defining remote sensing. Photogrammetric Engineering and Remote Sensing, 52: 1507–1511.

    Google Scholar 

  • Gianinetto M., 2006, Geocoding simulation of EROS-B synchronous imagery and comparison to EROS-A1 asynchronous data. Rivista Italiana di TELERILEVAMENTO – 2006, 36: 81–92.

    Google Scholar 

  • Gomarasca M.A., 2000, Introduzione a Telerilevamento e GIS per la Gestione delle Risorse agricole e Ambientali, Ed. AIT, p. 250, 32 Tavole a colori; 2nd ed.

    Google Scholar 

  • Hinz A., Dorstel C., Heier H., 2000, Digital modular camera: system concept and data processing workflow. Proceedings of ISPRS, Vol. XXXIII, Working Group II/7, Amsterdam.

    Google Scholar 

  • Kyoto Protocol, 1997, Adopted at the Third Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC-COP 3) in Kyoto, Japan, 11 December 1997.

    Google Scholar 

  • Kraus K., Pfeifer N., 1998, Determination of terrain models in wooded areas with airborne laser scanner data. International Journal of Photogrammetric and Remote Sensing, 53: 193–203.

    Article  Google Scholar 

  • International UAV Community, 2006. Referenced UAV Systems. UAV SYSTEMS: Global Perspective 2006, p. 171, www.uvs-info.com

  • Marino C.M., 1993, Progetto LARA, Laboratorio Aereo per Ricerche Ambientali, Consiglio. Nazionale delle Ricerche, Pomezia, Roma.

    Google Scholar 

  • Mastracci C., 1999, Introducing the Living Planet Programme, Atti 3° Conferenza Nazionale ASITA, Napoli 9-12 novembre, Vol. 1: LXXXV–LXXXIX.

    Google Scholar 

  • NASA, National Aeronautics Space Administration, 1993, EOS References Handbook. Washington DC, USA.

    Google Scholar 

  • NRSA, National Remote Sensing Agency, 1995, IRS-1C Data Users Handbook, Hyderabad, India, p. 1–169.

    Google Scholar 

  • Shannon C.E., 1949, Communication in the presence of noise. Proceedings Institute of Radio Engineers, 37, no. 1, 10–21. Reprint as classic paper in Proceedings of the IEEE, 86, no. 2, Feb. 1998.

    Google Scholar 

  • Obert H., 1923, Die Rakete zu den Planetenraumen (The Rocket into Planetary Space), p. 92.

    Google Scholar 

  • Obert H., 1929, Die Rakete zu den Planetenraumen (The Rocket into Planetary Space), p. 429.

    Google Scholar 

  • Pfeifer N., Lichti D., 2004, Terrestrial Laser Scanning Developments, Applications and Challenges, GIM International, 18(12): 50–53.

    Google Scholar 

  • Pfeifer N., Kraus K., 2001, Advanced DTM generation from Lidar data. International Archives of Photogrammetry and Remote Sensing, XXXIV-3/W4: 23–35.

    Google Scholar 

  • Rast M., Berger M., Sivestrin P., Del Bello U., 1999, Scientific Objectives and Derive Systems Requirements of the European Space Agency Earth Explorer, Land-Surface Processes and Interactions Mission, EUROPTO Conference, Florence, I, September, SPIE, Vol. 3870, pp. 49–57.

    Google Scholar 

  • Rutzinger M., Höfle B., Pfeifer N., Geist T., Stötter H., 2006, Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components. 1st International Conference on Object-Based Image Analysis, Salzburg, Austria.

    Google Scholar 

  • Sapeta K., 2000, Have you seen the light: LIDAR technology is creating believers. GEOworld, October:26.

    Google Scholar 

  • Schanda E., 1986, Physical Fundamentals of Remote Sensing. Springer-Verlag, Berlino, Germany.

    Google Scholar 

  • Schulz T., Ingensand H., 2004, Terrestrial Laser Scanning – Investigations and Applications for High Precision Scanning, FIG Working Week, Athens, Greece, May 22–27, 2004.

    Google Scholar 

  • Short N.M., 1982, The Landsat Tutorial Workbook, NASA Publication 1078. Government Printing Office, Washington DC, USA.

    Google Scholar 

  • Seige P., 1995, MOMS-02/D2 mission. Proceedings of MOMS-02 Symposium, Cologne, Germany, 5–7 July, pp. 41–51.

    Google Scholar 

  • Sohn H.G., Yoo, H.H., Kim, S.S., 2004. Evaluation of geometric modelling for KOMPSAT-1 EOC imagery using ephemeris data. ETRI Journal, 26(3): 218–228.

    Article  Google Scholar 

  • Thibault D.A., 1995, Land satellite information in the future. Proceedings Land Satellite Information in the Next Decade, Sett. 95, Vienna, Virginia, USA, III: pp. 14–21.

    Google Scholar 

  • Tomasi C., Prodi F., Sentimenti M., Cesar G., 1983, Multiwavelenght sunphotometers for accurate measurements of atmospheric extinction in the visible and near-IR spectral range. Applied Optics, 22: 622–630.

    Article  Google Scholar 

  • Turner A.K., 2000, LIDAR provides better DEM data. GEOworld, November: 30.

    Google Scholar 

  • Tyler W.A., 1993, The Multispectral Scanner, Landsat Other Sensor, Earth Observing Magazine.

    Google Scholar 

  • Ulaby F.T., Moore R.M., Fung A.F., 1981, Microwave Remote Sensing: Active and Passive, Vol. I. Microwave Remote Sensing, Fundamentals and Radiometry. Addison-Wesley Publishing Company, Reading, Massachussetts, USA.

    Google Scholar 

  • Ulaby F.T., Moore R.M., Fung A.F., 1982, Microwave Remote Sensing: Active and Passive, Vol. II, Radar Remote Sensing and Surface Scattering and Emission Theory. Addison-Wesley Publishing Company, Reading, Massachussetts, USA.

    Google Scholar 

  • Ulaby F.T., Moore R.M., Fung A.F., 1986, Microwave Remote Sensing: Active and Passive, Vol. III, From Theory to Applications. Addison-Wesley Publishing Company, Reading, Massachussetts, USA.

    Google Scholar 

  • Volz F.E., 1959, Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellelangenabhangingkeit der Dunsttrubung. Archives for Meteorology, Geophysics and Bioclimatalogy., 10: 100–131.

    Article  Google Scholar 

  • WegmŸller U., 1995, Land surface analysis using ERS-01 SAR. ESA Bulletin, 81: 30–37.

    Google Scholar 

  • WegmŸller U., Werner C.L., NŸesch D., Borgeaud M., 1997, Retrieval of vegetation parameters with SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing, 35, 1: 18–24.

    Article  Google Scholar 

  • Wehr A., Lohr U., 1999, Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3): 68–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Gomarasca .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gomarasca, M.A. (2009). Acquisition Systems. In: Basics of Geomatics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9014-1_6

Download citation

Publish with us

Policies and ethics