Advertisement

Selectivity Improvement of Semiconductor Gas Sensors by Filters

  • Andrey Ryzhikov
  • Michel Labeau
  • Alexandre Gaskov
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The use of filters to block interfering gases from reaching the surface of the sensing element is an effective manner to improve selectivity of gas sensors. Different types of filters are discussed. As examples, applications of active and passive filtering membranes are considered.

Keywords

gas sensors active and passive filters membranes selectivity improvement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Logothetis, M. D. Hurley, W. J. Kaiser, and Y. C. Yao, Selective methane sensors, Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, 175–178 (1986).Google Scholar
  2. 2.
    C. Pijolat, J. P. Viricelle, G. Tournier, and P. Montmeat, Application of membranes and filtering films for gas sensors improvements, Thin Solid Films 490, 7–16 (2005).CrossRefADSGoogle Scholar
  3. 3.
    C. H. Kwon, D. H. Yun, H.-K. Hong, S.-R. Kim, K. Lee, Ho Y. Lim, and Ki H. Yoon. Multi-layered thick film gas sensor array for selective sensors by catalytic filtering technology, Sens. Actuators B 65, 327–330 (2000).CrossRefGoogle Scholar
  4. 4.
    T. Weh, M. Fleischer, and H. Meixner, Optimization of physical filtering for selective high temperature H2 sensors, Sens. Actuators B 68, 146–150 (2000).CrossRefGoogle Scholar
  5. 5.
    G. Tournier, and C. Pijolat, Selective filter for SnO2-based gas sensor: application to hydrogen trace detection, Sens. Actuators B 106, 553–562 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Schweiser-Berberich, S. Strautmann, U. Weimar, R. Sharma, A. Seube, A. Peyre-Lavigne, and W. Gopel, Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors, Sens. Actuators B 58, 318–324 (1999).CrossRefGoogle Scholar
  7. 7.
    S. Kitsukawa, H. Nakagawa, K. Fukuda, S. Asakura, S. Takahashi, and T. Shigemori, The interference elimination for gas sensor by catalyst filters, Sens. Actuators B 65, 120–121 (2000).CrossRefGoogle Scholar
  8. 8.
    O. Hugon, M. Sauvan, P. Benech, C. Pijolat, and F. Lefebvre, Gas separation with a zeolite filter, application to the selectivity enchancement of chemical sensors, Sens. Actuators B 67, 235–243 (2000).CrossRefGoogle Scholar
  9. 9.
    W. R. Penrose, Li Pan, J. R. Stetter, W. M. Ollison, Sensitive measurement of ozone using amperometric gas sensors, Anal. Chim. Acta 313, 209–219 (1995).CrossRefGoogle Scholar
  10. 10.
    M. Schweiser-Berberich, S. Strautmann, W. Gopel, R. Sharma, and A. Peyre-Lavigne, Filters for tin dioxide CO gas sensors to pass the UL2034 standard, Sens. Actuators B 66, 34–36 (2000).CrossRefGoogle Scholar
  11. 11.
    F. Ménil, C. Lucat, and H. Debéda, The thick-film route to selective gas sensors, Sens. Actuators B 24–25, 415–420 (1995).CrossRefGoogle Scholar
  12. 12.
    I. N. Nikolaev, R. R. Galiev, A. V. Litvinov, and Yu. A. Utochkin, Selective gas analyzer for low concentrations of H2S, Measurement technique 6, 67–70 (2004) (in Russian).Google Scholar
  13. 13.
    V. I. Filippov, A. A. Terentjev, and S. S.Yakimov, MOS structure (Pd-SiO2-Si) based gas sensor with an external catalytic element, Sens. Actuators B 41, 153–158 (1997).CrossRefGoogle Scholar
  14. 14.
    A. Katsuki, and K. Fukui, H2 selective sensor based on SnO2, Sens. Actuators B 52, 30–37 (1998).CrossRefGoogle Scholar
  15. 15.
    P. Althainz, A. Dahlke, M. Frietsch-Klarhof, J. Goschnick, and H. J. Ache, Reception tuning of gas-sensor microsystems by selective coatings, Sens. Actuators B 24–25, 366–369 (1995).CrossRefGoogle Scholar
  16. 16.
    M. Fleischer, M. Seth, C.-D. Kohl, and H. Meixner, A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas filtering SiO2 layer, Sens. Actuators B 35–36, 297–302 (1996).CrossRefGoogle Scholar
  17. 17.
    T. Weh, J. Frank, M. Fleischer, and H. Meixner, On the mechanism of hydrogen sensing with SiO2 modificated high temperature Ga2O3 sensors, Sens. Actuators B 78, 202–207 (2001).CrossRefGoogle Scholar
  18. 18.
    J. Goschnick, M. Frietsch, and T. Schneider, Non-uniform SiO2 membranes produced by ion beam-assisted chemical vapour deposition to tune WO3 gas sensor microarrays, Surf. Coat. Techn. 108–109, 292–296 (1998).CrossRefGoogle Scholar
  19. 19.
    J. Goschnick, M. Frietsch, I. Kiselev, and K. Halim, Lateral inhomogeneity of gas permeable Al2O3 or SiO2 coating as a tuning tool for the gas analytical performance of gradient microarrays, Proc. of 2nd VDE World Microtech. Congr., Munchen, Germany, Oct. 2003.Google Scholar
  20. 20.
    C. Pijolat, M. Camara, J. Courbat, J.-P. Viricelle, D. Briand, and N.F. de Rooij, Application of carbon nano-powders for a gas micro-preconcentrator, Sens. Actuators B 127, 179–185 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Cabot, J. Arbitol, A. Cornet, J. R. Morante, Fanglin Chen, and Meilin Liu, Mesoporous catalytic filters for semiconductor gas sensors, Thin Solid Films 436, 64–69 (2003).CrossRefADSGoogle Scholar
  22. 22.
    K. Fukui and S. Nishida, CO gas sensor based on Au-La2O3 added SnO2 ceramics with siliceous zeolite coat, Sens. Actuators B 45, 101–106 (1997).CrossRefGoogle Scholar
  23. 23.
    I. Kocemba and T. Paryjszak, Metal films on a SnO2 surface as selective gas sensors, Thin Solid Films 272, 15–17 (1996).CrossRefADSGoogle Scholar
  24. 24.
    P. Montmeat, C. Pijolat, G. Tournier, and J.-P. Viricelle, The influence of platinum membrane on the sensing properties of a tin dioxide thin film, Sens. Actuators B 84, 148–159 (2002).CrossRefGoogle Scholar
  25. 25.
    A. S. Ryzhikov, A. N. Shatokhin, F. N. Putilin, M. N. Rumyantseva, A. M. Gaskov, and M. Labeau, Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation, Sens. Actuators B 107, 387–391 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Sauvan and C. Pijolat, Selectivity improvement of SnO2 films by superficial metallic films, Sens. Actuators B 58, 295–301 (1999).CrossRefGoogle Scholar
  27. 27.
    C. A. Papadopolous and J. N. Avaritsiotis, A model for the gas sensing properties of tin oxide thin films with surface catalysts, Sens. Actuators B 28, 201–210 (1995).CrossRefGoogle Scholar
  28. 28.
    J. Miszei, Activation technology of SnO2 layer by metal particles from ultrathin metal films, Sens. Actuators B 15–16, 328–333 (1993).Google Scholar
  29. 29.
    K. Steiner, U. Hoefer, G. Kuhner, G. Sulz, and E. Wagner, Ca- and Pt-catalysed thin-film SnO2 gas sensors for CO and CO2 detection, Sens. Actuators B 25, 529–531 (1995).CrossRefGoogle Scholar
  30. 30.
    A. Galdikas, A. Mironas, D. Senuliene, A. Setkus, W. Gopel, and K.-D. Schierbaum, Copper on-top-sputtering induced modification of tin dioxide thin film gas sensors, Sens. Actuators B 58, 330–337 (1999).CrossRefGoogle Scholar
  31. 31.
    J. Wollenstein, H. Bottner, M. Jaegle, W. J. Becker, and E. Wagner, Material properties and the influence of metallic catalysts at the surface of highly dense SnO2 films, Sens. Actuators B 70, 196–202 (2000).CrossRefGoogle Scholar
  32. 32.
    C. A. Papadopoulos, D. S. Vlachos, and J. N. Avaritsiotis, Comparative study of various metal-oxide-based gas-sensor architectures, Sens. Actuators B 32, 61–69 (1996).CrossRefGoogle Scholar
  33. 33.
    M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns, CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors, Sens. Actuators B 65, 379–381 (2000).CrossRefGoogle Scholar
  34. 34.
    S. O. Park, S. A. Akbar, and J. Hwang, Selective gas detection with catalytic filters, Mater. Chem. Phys. 75, 56–60 (2002).CrossRefGoogle Scholar
  35. 35.
    M. Fleischer, M. Seth, C.-D. Kohl, and H. Meixner, A study of surface modification at semiconducting Ga2O3 thin film sensors for enhancement of the sensitivity and selectivity, Sens. Actuators B 35–36, 290–296 (1996).CrossRefGoogle Scholar
  36. 36.
    M. Fleischer, S. Kornely, T. Weh, J. Frank, and H. Meixner, Selective gas detection with high-temperature operated metal oxides using catalytic filters, Sens. Actuators B 69, 205–210 (2000).CrossRefGoogle Scholar
  37. 37.
    A. Ryzhikov, M. Labeau, and A. Gaskov, Al2O3(M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors, Sens Actuators B 109, 91–96 (2005).CrossRefGoogle Scholar
  38. 38.
    A. Ryzhikov, F. Robaut, M. Labeau, and A. Gaskov, New gas sensitive MIS-structures Pt/Al2O3(M = Pt, Rh)/Si with a granular dielectric layer, Sens. Actuators B 133, 613–616 (2008).CrossRefGoogle Scholar
  39. 39.
    J. Hubalek, K. Malysz, J. Prasek, X. Vilanova, O. Ivanov, E. Llobet, J. Brezmes, X. Correig, and Z. Sverak, Pt-loaded Al2O3 catalytic filters for screen-printed WO3 sensors highly selective to benzene, Sens. Actuators B 101, 277–283 (2004).CrossRefGoogle Scholar
  40. 40.
    G. G. Mandayo, E. Castano, F. J. Grasia, A. Cirera, A. Cornet, and J. R. Morante, Built-in active filter for an improvement response to carbon monoxide combining thin- and thick-film technologies, Sens. Actuators B 87, 88–94 (2002).CrossRefGoogle Scholar
  41. 41.
    N. F. Szabo and P. K. Dutta, Strategies for total NOX measurements with minimal CO interference utilizing a microporous zeolitic catalytic filter, Sens. Actuators B 88, 168–177 (2003).CrossRefGoogle Scholar
  42. 42.
    A. Cirera, A. Cabot, A. Cornet, and J. R. Morante, CO-CH4 selectivity enhancement by in situ Pd-catalysed microwave SnO2 nanoparticles for gas detectors using active filter, Sens. Actuators B 78, 151–160 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Andrey Ryzhikov
    • 1
    • 2
  • Michel Labeau
    • 2
  • Alexandre Gaskov
    • 1
  1. 1.Chemistry DepartmentMoscow State UniversityMoscowRussia
  2. 2.Institut National Polytechnique de Grenoble, MINATECGrenobleFrance

Personalised recommendations