Skip to main content

Defect Chemistry of Sensor Materials

  • Conference paper
Sensors for Environment, Health and Security

Abstract

Nernst-type chemical gas sensors comprise a reference electrode, a sensing electrode, and a functional solid electrolyte, which determines the high selectivity of this type of sensor. Taguchi-type chemical gas sensors have as the active material a mixed ionic-electronic conductor (MIEC) with two metallic electrodes, and this type of sensor exhibits a high sensitivity, but a poor selectivity. In order to optimize the electrical properties of the functional materials, usually doping is applied. Dopants will influence the defect chemistry of these materials by introducing ionic and/or electronic defects. After an introduction of intrinsic and extrinsic disorder and the Kröger-Vink defect notation, the defect chemistry of selected chemical gas sensor materials is presented in detail. In addition, electrodes for the electrochemical determination of organic pollutants in aqueous environments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abaci, S., Pekmez, K., and Yildiz, A., 2005, The influence of nonstoichiometry on the electrocatalytic activity of PbO2 for oxygen evolution in acidic media, Electrochem. Commun. 7:328–332.

    Article  CAS  Google Scholar 

  • Ahmed, I., Eriksson, S. G., Ahlberg, E., Knee, C. S., Marlsson, M., Matic, A., Engberg, D., and Börjesson, L., 2006, Proton conductivity and low temperature structure of In-doped BaZrO3, Solid State Ionics 177: 2357–2362.

    Article  CAS  Google Scholar 

  • Atkinson, A., Levy, M. R., Roche, V., and Rudkin, R. A., 2006, Defect properties of Ti-doped Cr2O3, Solid State Ionics 177: 1767–1770.

    Article  CAS  Google Scholar 

  • Bhide, S. V., and Virkar, A. V., 1999, Stability of BaCeO3-based proton conductors in water-containing atmospheres, J. Electrochem. 146:2038–2044.

    Article  CAS  Google Scholar 

  • Bohn, H. G., and Schober, T., 1989, IFF Bulletin 53:3–22.

    Google Scholar 

  • Bonanos, N., Ellis, B., and Mahmood, M. N., 1988, Oxide ion conduction in ytterbium-doped strontium cerate, Solid State Ionics 28:579–584.

    Article  Google Scholar 

  • Bonanos, N., and Poulsen, F. W., 1999, Considerations of defect equilibria in high temperature proton-conducting cerates, J. Mat. Chem. 9:431–434.

    Article  CAS  Google Scholar 

  • Cao, J., Zhao, H., Cao, F., and Zhang, 2007, The influence of F doping on the activity of PbO2 film electrodes in oxygen evolution reaction, Electrochim. Acta 52:7870–7876.

    Article  CAS  Google Scholar 

  • Chiang, P. H., Eng, D., and Stoukides, M., 1991, Electrocatalytic methane dimerization with a Yb-doped SrCeO3 solid electrolyte, J. Electrochem. Soc. 138:L11–L12.

    Article  CAS  Google Scholar 

  • Chiang, P. H., Eng, D., and Stoukides, M., 1992, Nonoxidative methane coupling with the aid of solid electrolytes, Solid State Ionics 53–56:135–141.

    Article  Google Scholar 

  • Chiang, P. H., Eng, D., and Stoukides, M., 1993a, Solid electrolyte aided direct coupling of methane, J. Catal. 139:683–687.

    Article  CAS  Google Scholar 

  • Chiang, P. H., Eng, D., and Stoukides, M., 1993b, Electrocatalytic nonoxidative dimerization of methane over Ag electrodes, Solid State Ionics 61:99–103.

    Article  CAS  Google Scholar 

  • Chiang, Y. M., Birnie III, D., and Kingery, W. D., 1997, Physical Ceramics. Principles for Ceramic Science and Engineering, The MIT series in Materials Science and Engineering, Wiley, New York, ISBN 0-471-59873-9, Chapters 2 and 3.

    Google Scholar 

  • Cook, R. L., and Sammells, A. F., 1991, On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells, Solid State Ionics 45:311–321.

    Article  CAS  Google Scholar 

  • DeSchutter, F., Vangrunderbeek, J., Luyten, J., Kosacki, I., Van Landschoot, R., Schram, J., and Schoonman, J., 1992, Proton conductivity in strontium cerates for hydrogen gas sensors in coal gasification systems, Solid State Ionics 57:77–81.

    Article  CAS  Google Scholar 

  • Devilliers, D., Dinh Thi, M. T., Mahe, E., Dauriac, V., and Lequeux, N., 2004, Electroanalytical investigations on electrodeposited lead dioxide, J. Electroanal. Chem. 573:227–239.

    Article  CAS  Google Scholar 

  • Eyring, H., Henderson, D., and Jost, W. (eds), 1970, Physical Chemistry. An Advanced Treatise, Academic, New York, London.

    Google Scholar 

  • Hamakawa, S., Hibino, T., and Iwahara, H., 1994, Electrochemical hydrogen permeation in a proton-hole mixed conductor and its application to a membrane reactor, J. Electrochem. Soc., 141:1720–1725.

    Article  CAS  Google Scholar 

  • Hayes, W. (ed.), 1974, Crystals with the Fluorite Structure. Electronic, Vibrational, and Defect Properties, Clarendon, Oxford.

    Google Scholar 

  • Hempelmann, R., 1996, Hydrogen diffusion mechanism in proton conducting oxides, Physica B 226:72–77.

    Article  ADS  CAS  Google Scholar 

  • Hempelmann, R., and Karmonik, C., 1996, Proton diffusion in proton conducting oxides, Phase Trans 58:175–184.

    Article  CAS  Google Scholar 

  • Hibino, T., and Iwahara, H., 1993, Simplification of solid oxide fuel cell system using partial oxidation of methane, Chem. Lett. 22:1131–1134.

    Article  Google Scholar 

  • Hibino, T., Asano, K., and Iwahara, H., 1994, Improvement of CAPCIUS cell using SrCe0.95Yb0.05O3-α as a solid electrolyte, Chem. Lett. 23:485–488.

    Article  Google Scholar 

  • Iwahara, H., 1988, High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production, Solid State Ionics 28–30: 573–578.

    Article  Google Scholar 

  • Iwahara, H., 1992, Solid State Ionics: Materials and Applications 247.

    Google Scholar 

  • Iwahara, H., 1995, Technological challenges in the application of proton conducting ceramics, Solid State Ionics 77:289–298.

    Article  CAS  Google Scholar 

  • Iwahara, H., 1996, Proton conducting ceramics and their applications, Solid State Ionics 86–88: 9–15.

    Article  Google Scholar 

  • Iwahara H., and Uchida, H., 1983, Proc. 9th Int. Meeting Chem. Sensors, Fukuoka, Japan, 19–22.

    Google Scholar 

  • Iwahara, H., Eseka, T., Uchida, U., and Maeda, N., 1981, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics 3–4:359–363.

    Article  Google Scholar 

  • Iwahara, H., Uchida, H., and Maeda, N., 1982, High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes, J. Power Sources 7:293–301.

    Article  ADS  CAS  Google Scholar 

  • Iwahara, H., Uchida, H., and Maeda, N., 1983a, Studies on solid electrolyte gas cells with high-temperature-type proton conductor and oxide ion conductor, Solid State Ionics 11:109–115.

    Article  CAS  Google Scholar 

  • Iwahara, H., Uchida, H., and Tanaka, S., 1983b, High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells, Solid State Ionics 9/10:1021–1026.

    Article  Google Scholar 

  • Iwahara, H., Eseka, T., Uchida, H., and Gaki, K., 1986a, High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas, Solid State Ionics 18–19:1003–1007.

    Article  Google Scholar 

  • Iwahara, H., Uchida, H., and Tanaka, S., 1986b, High temperature-type proton conductive solid oxide fuel cells using various fuels, J. Appl. Electrochem. 16:663–668.

    Article  CAS  Google Scholar 

  • Kirk, T. J., and Winninck, J., 1993, A hydrogen sulfide solid-oxide fuel cell using ceria-based electrolytes, J. Electrochem. Soc. 140:3494–3496.

    Article  ADS  CAS  Google Scholar 

  • Kosacki, I., and Tuller, H. L., 1995, Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors, Solid State Ionics 80:223–229.

    Article  CAS  Google Scholar 

  • Kosacki, I., Becht, J. G. M., Van Landschoot, R., and Schoonman, J., 1993, Electrical properties of SrCe0.95 Yb0.05O3 in hydrogen containing atmospheres, Solid State Ionics 59:287–296.

    Article  CAS  Google Scholar 

  • Kreuer, K. D., 1999, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ionics 125:285–302.

    Article  CAS  Google Scholar 

  • Kröger, F. A., 1964, The Chemistry of Imperfect Crystals, North Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Liu, J. F., and Nowick, A. S., 1992, The incorporation and migration of protons in Nd-doped BaCeO3, Solid State Ionics 50:131–138.

    Article  CAS  Google Scholar 

  • Manea, F., Schoonman, J., and Radovan, C., 2005a, Electrodeposition of PbO2 and Co-doped PbO2 on stainless steel support and its electrochemical characterization in acidic media, Revista de Chimie, 56:266–271.

    CAS  Google Scholar 

  • Manea, F., Radovan, C., Schoonman, J., and Vlaicu, I., 2005b, Characterization and application of Co-doped PbO2 films in alkaline media, Revista de Chimie, 56:1003–1009.

    CAS  Google Scholar 

  • Manea, F., Schoonman, J., and Radovan, C., 2006, The behaviour of Co-doped PbO2 electrode in acid media containing glucose or cysteine, Revista de Chimie, 57:57–62.

    CAS  Google Scholar 

  • Marnellos, G., Sanapoulou, O., Rizou, A., and Stoukides, M., 1997, The use of proton conducting solid electrolytes for improved performance of hydro- and dehydrogenation reactors, Solid State Ionics 97:375–383.

    Article  CAS  Google Scholar 

  • Matsumoto, H., Suzuki, T., and Iwahara, H., 1999, Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3, Solid State Ionics 116:99–104.

    Article  CAS  Google Scholar 

  • Matsumoto, H., Iida, Y., and Iwahara, H., 2000, Current efficiency of electrochemical hydrogen pumping using a high-temperature proton conductor SrCe0.95Yb0.05O3-α, Solid State Ionics 127:345–349.

    Article  CAS  Google Scholar 

  • Matzke, T., Stimming, U., Karmonik, C., Soetratmo, M., Hempelmann, R., and Guethoff, F., 1999, Quasielastic thermal neutron scattering experiment on the proton conductor SrCe0.95Yb0.05H0.02O2.985, Solid State Ionics 86–88:621–628.

    Google Scholar 

  • Moseley, P. T., Williams, D. E., 1990, A selective ammonia sensor, Sensors and Actuators B. Chemical 1:113–118.

    Article  Google Scholar 

  • Norby, T., 1990, Proton conduction in oxides, Solid State Ionics 40–41:857–862.

    Article  Google Scholar 

  • Norby, T., 1999, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics 125:1–11.

    Article  CAS  Google Scholar 

  • Nowick, A. S. and Yang, D., 1995, High-temperature protonic conductors with perovskite-related structures, Solid State Ionics 77:137–146.

    Article  CAS  Google Scholar 

  • Okajima, Y., Ide, T., Kichuchi, K., and Nakamura, K., 1998, Sensors and Materials 10:113–127.

    CAS  Google Scholar 

  • Rey, K. H., and Haile, S. M., 1999, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions, Solid State Ionics 125:355–367.

    Article  Google Scholar 

  • Rostrup-Nielsen, J. R., and Hansen, J. H. B., 1993, CO2-Reforming of Methane over Transition Metals, J. Catal. 144:38–49.

    Article  CAS  Google Scholar 

  • Scherban, T., and Nowick, A. S., 1989, Bulk protonic conduction in Yb-doped SrCeO3, Solid State Ionics 35:189–194.

    Article  Google Scholar 

  • Schober, T., Schilling, W., and Wenzl, H., 1996, Defect model of proton insertion into oxides, Solid State Ionics 86:653–658.

    Article  Google Scholar 

  • Schober, T., Krug, F., and Schilling, W., 1997, Criteria for the application of high temperature proton conductors in SOFCs, Solid State Ionics 97:369–373.

    Article  CAS  Google Scholar 

  • Scholten, M. J., Schoonman, J., Van Miltenburg, J. C., and Oonk, H. J., 1993, Synthesis of strontium and barium cerate and their reaction with carbon dioxide, Solid State Ionics 61:83–91.

    Article  CAS  Google Scholar 

  • Tanner, C. W., and Virkar, A. V., 1996, Instability of BaCeO3 in H2O-containing atmospheres, J. Electrochem. Soc. 143:1386–1389.

    Article  CAS  Google Scholar 

  • Uchida, H., Maeda, N., and Iwahara, H., 1982, Steam concentration cell using a high temperature type proton conductive solid electrolyte, J. Appl. Electrochem. 12:645–651.

    Article  CAS  Google Scholar 

  • Uchida, H., Maeda, M., and Iwahara, H., 1983, Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures, Solid State Ionics 11:117–124.

    Article  CAS  Google Scholar 

  • Uchida, H., Yoshikawa, H., Esaka, T., Ohtsu, S., and Iwahara, H., 1989, Formation of protons in SrCeO3-based proton conducting oxides. Part II. Evaluation of proton concentration and mobility in Yb-doped SrCeO3, Solid State Ionics 36:89–95.

    Article  CAS  Google Scholar 

  • Van Rij, L. N., 2000, Ceramic Methane Sensor based on a Catalytic Principle, PhD Thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Van Rij, L. N., Van Landschoot, R. C., and Schoonman, J., 1999, Methane detection in oxygen-poor atmospheres using a catalytic asymmetric sensor, 12th International Conference on Solid State Ionics, Halkidiki, Greece, 574–575.

    Google Scholar 

  • Velichenko, A. B., and Devilliers, D., 2007, Electrodeposition of fluorine-doped lead dioxide, J. Fluorine Chem. 128:269–276.

    Article  CAS  Google Scholar 

  • Zheng, M., and Zhen, X., 1993, SrCeO3-based solid electrolyte probe sensing hydrogen content in molten aluminium, Solid State Ionics 59:167–169.

    Article  CAS  Google Scholar 

  • Zheng, M.H., and Zhen, X.X., Metall. Trans.B. 24:789–794.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Manea, F., Perniu, D., Schoonman, J. (2009). Defect Chemistry of Sensor Materials. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_7

Download citation

Publish with us

Policies and ethics