Skip to main content

Radiation and Nuclear Materials Detection Research and Development at ORNL

  • Conference paper
Sensors for Environment, Health and Security

Abstract

Research and development is underway to improve radiation and nuclear detection capabilities. This research and development in radiation and nuclear detection includes areas such as advanced materials, applied research and engineering for designing and fabricating customized detection equipment, and theoretical modeling and computational support. Oak Ridge National Laboratory (ORNL) has a distinctive set of detector materials fabrication and characterization capabilities and recently created a Center for Radiation Detection Materials and Systems. Applied research and engineering efforts have led to the development of improved detectors for specific applications including safeguards, treaty monitoring, and science experiments. All sizes, types, and capabilities of detector systems have been addressed from miniature to man-portable and from neutrons to gamma radiation. Dedicated test beds, in-house and in the field, have been established to analyze, characterize, and improve detection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Matsumoto, K. Hitomi, T. Shoji, and Y. Hiratate, Bismuth tri-iodide crystal for nuclear radiation detectors, IEEE Transactions on Nuclear Science 49(5), 2517–2519 (2002).

    Article  ADS  CAS  Google Scholar 

  2. D. Nason and L. Keller, The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport, Journal of Crystal Growth 156, 221–226 (1995).

    Article  ADS  CAS  Google Scholar 

  3. M. Schieber, T. J. Davies, W. F. Schnepple, P. T. Randtke, and R. C. Cariston, Crystal growth and electro-optical characterization bismuth tri-Iodide, Journal of Applied Physics 45, 5371–5372 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Y. N. Dmitriev, P. R. Bennett, L. J. Cirignano, M. Klugerman, and K. S. Shah, Bismuth iodide crystal as a detector material: Some optical and electrical properties, SPIE Proceedings Series 3768, 521–529 (1999).

    Article  ADS  Google Scholar 

  5. A. Iltis, M. R. Mayhugh, P. Menge, C. M. Rozsa, O. Selles, and V. Solovyev, Lanthanum halide scintillators: Properties and applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment 563(2), 359–363 (2006).

    Article  ADS  CAS  Google Scholar 

  6. L. Fornaro, I. Aguiar, A. Noguera, M. Perez, N. Sasen, and L. Mussio, Perspectives of the heavy halides family for direct and digital X-ray imaging, IEEE Nuclear Science Symposium N15-2 (2005).

    Google Scholar 

  7. E. V. D. van Loef, J. Glodo, W. M. Higgins, and K. S. Shah, Optical and scintillation properties of Cs2LiYCl6 : Ce3+ and Cs2LiYCl6 : Pr3+ crystals, IEEE Transactions on Nuclear Science 52, 1819–1822 (2005).

    Article  ADS  CAS  Google Scholar 

  8. K. Ziock and W. Goldstein, The lost source, varying backgrounds and why bigger may not be better, Proceedings of Conference of Unattended Radiation Sensor Systems for Remote Applications AIP 632, 60–70 (2002).

    ADS  Google Scholar 

  9. K. P. Ziock, W. W. Craig, L. Fabris, R. C. Lanza, S. Gallagher, B. K. P. Horn, and N. W. Madden, Large area imaging detector for long-range passive detection of fissile material, IEEE Transactions on Nuclear Science 51(5), 2238–2244 (2004).

    Article  ADS  CAS  Google Scholar 

  10. S. Gottesman and E. Fenimore, New family of binary arrays for coded aperture imaging, Applied Optics 28(20), 4344–4352 (1989).

    Article  ADS  CAS  Google Scholar 

  11. J. T. Mihalczo, J. A. Mullens, J. K. Mattingly, and T. E. Valentine, Physical description of nuclear materials identification system (NMIS) signatures, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment 450(2–3), 531–555 (2000).

    Article  ADS  CAS  Google Scholar 

  12. J. T. Mihalczo, J. K. Mattingly, J. S. Neal, and J. A. Mullens, NMIS plus gamma spectroscopy for attributes of HEU, PU, and HE detection, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 213, 378–384 (2004).

    Article  CAS  Google Scholar 

  13. T. Uckan, J. March-Leuba, D. Powell, M. Wright, and J. Glaser, Blend down Monitoring system fissile mass flow monitor implementation at the electrochemical plant, Zelenogorsk, Russia, ORNL/TM-2005/19, November 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Hardy, J., Wright, M. (2009). Radiation and Nuclear Materials Detection Research and Development at ORNL. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_32

Download citation

Publish with us

Policies and ethics