Skip to main content

Oxygen Indicators in Food Packaging

  • Conference paper
Sensors for Environment, Health and Security

Abstract

The detection of oxygen is important and optical sensors for this purpose are of increasing interest, especially in modified atmosphere food packaging (MAP), in which the food package is flushed with a gas, such as carbon dioxide or nitrogen. An oxygen optical sensor for MAP should be inexpensive, rapidly-responding and irreversible. The reasons behind the need to develop such a sensor for MAP are discussed. The different types of indicator that have been developed to date fall mainly into the following categories: reversible luminescent indicators, reversible colourimetric indicators and visible and/or UV light activated indicators. The basic technologies underpinning each of these three different indicator types are described, their various typical components detailed and examples of the indicators in action given. The potentials of these different indicators for application in MAP are evaluated. Particular attention is given to a new irreversible, reusable, colourimetric, UV-activated oxygen indicator that shows great potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Rooney, Active Food Packaging (Blackie, London, 1995).

    Google Scholar 

  2. A. L. Brody, B. R. Strupinsky, and L. R. Kline, Active Packaging for Food Application (Technomic Publishing, Lancaster, PA, 2001).

    Google Scholar 

  3. N. Waite, Active Packaging (PIRA International, Leatherhead, UK, 2004).

    Google Scholar 

  4. A. Mills, Oxygen indicators and intelligent inks for packaging food, Chem. Soc. Rev. 34, 1003–1011 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. M. Smolander, E. Hurme, and R. Ahvenainen, Leak indicators for modified-atmosphere packages, Trends Food Sci. Technol. 3, 101–106 (1997).

    Article  Google Scholar 

  6. F. C. O’Mahony, T. C. O’Riordan, N. Papkovskaia, J. P. Kerry, and D. B. Papkovsky, Non-destructive assessment of oxygen levels in industrial modified atmosphere packaged cheddar cheese, Food Control 17, 286–292 (2006).

    Article  CAS  Google Scholar 

  7. O. S. Wolfbeis, Fiber Optic Chemical Sensors (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  8. D. B. Papkovsky, N. Papkovskaia, A. Smyth, J. Kerry, and V. I. Ogurtsov, Phosphorescent sensor approach for non-destructive measurement of oxygen in packaged foods: optimisation of disposable oxygen sensors and their characterization over a wide temperature range, Anal. Lett. 33, 1755–1777 (2000).

    Article  CAS  Google Scholar 

  9. P. Hartmann, M. J. P. Leiner, and M. E. Lippitsch, Luminescence quenching behaviour of an oxygen sensor-based on a Ru(II) complex dissolved in polystyrene, Anal. Chem. 67, 88–93 (1995).

    Article  CAS  Google Scholar 

  10. S. Draxler, M. E. Lippitsch, I. Klimant, H. Kraus, and O. S. Wolfbeis, Effects of polymer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen, J. Phys. Chem. 99, 3162–6167 (1995).

    Article  CAS  Google Scholar 

  11. A. Mills, Optical oxygen sensors: utilising the luminescence of platinum metals complexes, Plat. Met. Rev. 41,115–27 (1997) and references therein.

    CAS  Google Scholar 

  12. A. Mills and A. Lepre, Controlling the response characteristics of luminescent porphyrin plastic film sensors for oxygen, Anal. Chem. 69, 4653–4659 (1997).

    Article  CAS  Google Scholar 

  13. A. Mills, Controlling the sensitivity of optical oxygen sensors, Sensor Actuator B 51, 60–68 (1998).

    Article  Google Scholar 

  14. OxySense, Inc. (September 2007); http://www.oxysense.com/index2.htm.

  15. J. N. Demas, B. A. DeGraff, and W. Xu, Modeling of luminescence quenching-based sensors — comparison of multisite and nonlinear gas solubility models, Anal. Chem. 67, 1377–1385 (1995).

    Article  CAS  Google Scholar 

  16. J. N. Demas and B. A. DeGraff, Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes, Coord. Chem. Rev. 211, 317–351 (2001).

    Article  CAS  Google Scholar 

  17. Mitsubishi Gas Chemical Company Inc. (September 2007); http://www.mgc.co.jp/eng/company/materials/products/ageless/related/index.html.

  18. Y. Yoshikawa, T. Nawata, M. Otto, and Y. Fujii, US Patent 4169811, 1979.

    Google Scholar 

  19. M. Goto, JP Patent 62 259059, 1987.

    Google Scholar 

  20. R. Ahvenainen and E. Hurme, Active and smart packaging for meeting consumer demands for quality and safety, Food Addit. Contain. 14, 753–763 (1997).

    CAS  Google Scholar 

  21. R. Ahvenainen, M. Eilamo, and E. Hurme, Detection of improper sealing and quality deterioration of modified-atmosphere-packed pizza by a colour indicator, Food Control 8, 177–184 (1997).

    Article  Google Scholar 

  22. K. Eaton, A novel colorimetric oxygen sensor: dye redox chemistry in a thin polymer film, Sensor. Actuator. B 85, 42–51 (2002).

    Article  Google Scholar 

  23. D. J. Fife and W. M. Moore, Reduction and quenching of photoexcited flavins by EDTA, Photochem. Photobiol. 29, 43–47 (1979).

    Article  CAS  Google Scholar 

  24. M. W. W. Adams, K. K. Rao, and D. O. Hall, Photoactivated production of molecular-hydrogen over prolonged periods catalyzed by platinum or hydrogenase, Photobiochem. Photobiophys. 1, 33–41 (1979).

    CAS  Google Scholar 

  25. T. A. Blinka, C. Bull, C. R. Barmor, and D.V. Speer, US Patent 5583047, 1996.

    Google Scholar 

  26. C. R. Barmor and C. Bull, US Patent 5483819, 1996.

    Google Scholar 

  27. A. I. Krasna, Proflavin catalyzed photoproduction of hydrogen from organic-compounds, Photochem. Photobiol. 29, 267–276 (1979).

    Article  CAS  Google Scholar 

  28. S.-K. Lee, A. Mills, and A. Lepre, An intelligence ink for oxygen, Chem. Commun. 1912–1913 (2004).

    Google Scholar 

  29. S.-K. Lee, M. Sheridan, and A. Mills, Novel UV-activated colorimetric oxygen indicator, Chem. Mater. 17, 2744–2751 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Mills, A. (2009). Oxygen Indicators in Food Packaging. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_24

Download citation

Publish with us

Policies and ethics