The detection of oxygen is important and optical sensors for this purpose are of increasing interest, especially in modified atmosphere food packaging (MAP), in which the food package is flushed with a gas, such as carbon dioxide or nitrogen. An oxygen optical sensor for MAP should be inexpensive, rapidly-responding and irreversible. The reasons behind the need to develop such a sensor for MAP are discussed. The different types of indicator that have been developed to date fall mainly into the following categories: reversible luminescent indicators, reversible colourimetric indicators and visible and/or UV light activated indicators. The basic technologies underpinning each of these three different indicator types are described, their various typical components detailed and examples of the indicators in action given. The potentials of these different indicators for application in MAP are evaluated. Particular attention is given to a new irreversible, reusable, colourimetric, UV-activated oxygen indicator that shows great potential.


oxygen indicator ink luminescence colourimetric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Rooney, Active Food Packaging (Blackie, London, 1995).Google Scholar
  2. 2.
    A. L. Brody, B. R. Strupinsky, and L. R. Kline, Active Packaging for Food Application (Technomic Publishing, Lancaster, PA, 2001).Google Scholar
  3. 3.
    N. Waite, Active Packaging (PIRA International, Leatherhead, UK, 2004).Google Scholar
  4. 4.
    A. Mills, Oxygen indicators and intelligent inks for packaging food, Chem. Soc. Rev. 34, 1003–1011 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Smolander, E. Hurme, and R. Ahvenainen, Leak indicators for modified-atmosphere packages, Trends Food Sci. Technol. 3, 101–106 (1997).CrossRefGoogle Scholar
  6. 6.
    F. C. O’Mahony, T. C. O’Riordan, N. Papkovskaia, J. P. Kerry, and D. B. Papkovsky, Non-destructive assessment of oxygen levels in industrial modified atmosphere packaged cheddar cheese, Food Control 17, 286–292 (2006).CrossRefGoogle Scholar
  7. 7.
    O. S. Wolfbeis, Fiber Optic Chemical Sensors (CRC Press, Boca Raton, FL, 1991).Google Scholar
  8. 8.
    D. B. Papkovsky, N. Papkovskaia, A. Smyth, J. Kerry, and V. I. Ogurtsov, Phosphorescent sensor approach for non-destructive measurement of oxygen in packaged foods: optimisation of disposable oxygen sensors and their characterization over a wide temperature range, Anal. Lett. 33, 1755–1777 (2000).CrossRefGoogle Scholar
  9. 9.
    P. Hartmann, M. J. P. Leiner, and M. E. Lippitsch, Luminescence quenching behaviour of an oxygen sensor-based on a Ru(II) complex dissolved in polystyrene, Anal. Chem. 67, 88–93 (1995).CrossRefGoogle Scholar
  10. 10.
    S. Draxler, M. E. Lippitsch, I. Klimant, H. Kraus, and O. S. Wolfbeis, Effects of polymer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen, J. Phys. Chem. 99, 3162–6167 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Mills, Optical oxygen sensors: utilising the luminescence of platinum metals complexes, Plat. Met. Rev. 41,115–27 (1997) and references therein.Google Scholar
  12. 12.
    A. Mills and A. Lepre, Controlling the response characteristics of luminescent porphyrin plastic film sensors for oxygen, Anal. Chem. 69, 4653–4659 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Mills, Controlling the sensitivity of optical oxygen sensors, Sensor Actuator B 51, 60–68 (1998).CrossRefGoogle Scholar
  14. 14.
    OxySense, Inc. (September 2007);
  15. 15.
    J. N. Demas, B. A. DeGraff, and W. Xu, Modeling of luminescence quenching-based sensors — comparison of multisite and nonlinear gas solubility models, Anal. Chem. 67, 1377–1385 (1995).CrossRefGoogle Scholar
  16. 16.
    J. N. Demas and B. A. DeGraff, Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes, Coord. Chem. Rev. 211, 317–351 (2001).CrossRefGoogle Scholar
  17. 17.
    Mitsubishi Gas Chemical Company Inc. (September 2007);
  18. 18.
    Y. Yoshikawa, T. Nawata, M. Otto, and Y. Fujii, US Patent 4169811, 1979.Google Scholar
  19. 19.
    M. Goto, JP Patent 62 259059, 1987.Google Scholar
  20. 20.
    R. Ahvenainen and E. Hurme, Active and smart packaging for meeting consumer demands for quality and safety, Food Addit. Contain. 14, 753–763 (1997).Google Scholar
  21. 21.
    R. Ahvenainen, M. Eilamo, and E. Hurme, Detection of improper sealing and quality deterioration of modified-atmosphere-packed pizza by a colour indicator, Food Control 8, 177–184 (1997).CrossRefGoogle Scholar
  22. 22.
    K. Eaton, A novel colorimetric oxygen sensor: dye redox chemistry in a thin polymer film, Sensor. Actuator. B 85, 42–51 (2002).CrossRefGoogle Scholar
  23. 23.
    D. J. Fife and W. M. Moore, Reduction and quenching of photoexcited flavins by EDTA, Photochem. Photobiol. 29, 43–47 (1979).CrossRefGoogle Scholar
  24. 24.
    M. W. W. Adams, K. K. Rao, and D. O. Hall, Photoactivated production of molecular-hydrogen over prolonged periods catalyzed by platinum or hydrogenase, Photobiochem. Photobiophys. 1, 33–41 (1979).Google Scholar
  25. 25.
    T. A. Blinka, C. Bull, C. R. Barmor, and D.V. Speer, US Patent 5583047, 1996.Google Scholar
  26. 26.
    C. R. Barmor and C. Bull, US Patent 5483819, 1996.Google Scholar
  27. 27.
    A. I. Krasna, Proflavin catalyzed photoproduction of hydrogen from organic-compounds, Photochem. Photobiol. 29, 267–276 (1979).CrossRefGoogle Scholar
  28. 28.
    S.-K. Lee, A. Mills, and A. Lepre, An intelligence ink for oxygen, Chem. Commun. 1912–1913 (2004).Google Scholar
  29. 29.
    S.-K. Lee, M. Sheridan, and A. Mills, Novel UV-activated colorimetric oxygen indicator, Chem. Mater. 17, 2744–2751 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of Pure & Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations