Skip to main content

Microelectronics-Based Biosensors for the Detection of Proteins and Nucleic Acids

  • Conference paper

Abstract

Novel biosensor concepts are being explored for the transduction of affinity-based interactions into electrical signals. The specificity of affinity-based biosensors depends on the molecular recognition properties of receptors, for example antibodies, or on the hybridization of complementary nucleic acids. In this chapter, various transducer technologies for the detection of affinity-based interactions will be discussed, focusing on the exploitation of microelectronics. Several examples of label-free detection will be given and impedimetric and plasmonic biosensors will be discussed into detail. In addition, one particular example where the use of labels makes sense will be highlighted by elaborating on magnetic biosensors. In this approach, magnetic particles can be used for sample preparation as well as detection, which allows an entry into the lab-on-chip field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Leech, Affinity biosensors, Chemical Society Reviews 23, 205–213 (1994).

    Article  CAS  Google Scholar 

  2. M. P. Byfield and R. A. Abuknesha, Biochemical aspects of biosensors, Biosensors & Bioelectronics 9, 373–400 (1994).

    Article  CAS  Google Scholar 

  3. K. R. Rogers, Principles of affinity-based biosensors, Molecular Biotechnology 14, 109–129 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. E. Katz and I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors, Electroanalysis 15, 913–947 (2003).

    Article  CAS  Google Scholar 

  5. T. G. Drummond, M. G. Hill, and J. K. Barton, Electrochemical DNA sensors, Nature Biotechnology 21, 1192–1199 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B-Chemical 49, 73–80 (1998).

    Article  Google Scholar 

  7. W. Laureyn, P. Van Gerwen, J. Suls, P. Jacobs, and G. Maes, Characterization of nanoscaled interdigitated palladium electrodes of various dimensions in KC1 solutions, Electroanalysis 13, 204–211 (2001).

    Article  CAS  Google Scholar 

  8. W. Laureyn, T. Stakenborg, and P. Jacobs, Genetic and other DNA-based biosensor applications, in: Handbook of Biosensors and Biochips, edited by R. Marks, D. Cullen, C. Lowe, H. H. Weetall, and I. Karube (Wiley, Chichester, 2007), pp. 1–19.

    Google Scholar 

  9. G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology 23, 1294–1301 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Y. L. Bunimovich, Y. S. Shin, W. S. Yeo, M. Amori, G. Kwong, and J. R. Heath, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution, Journal of American Chemical Society 128, 16323–16331 (2006).

    Article  CAS  Google Scholar 

  11. M. D. Marazuela and M. C. Moreno-Bondi, Fiber-optic biosensors — an overview, Analytical and Bioanalytical Chemistry 372, 664–682 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. R. W. Boyd and J. E. Heebner, Sensitive disk resonator photonic biosensor, Applied Optics 40, 5742–5747 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Sensor based on an integrated optical microcavity, Optics Letters 27, 512–514 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  14. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Silicon-on-Insulator microring resonator for sensitive and label-free bio sensing, Optics Express 15, 7611–7615 (2007).

    Google Scholar 

  15. F. Frederix, J. M. Friedt, K. H. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, and G. Borghs, Biosensing based on light absorption of nanoscaled gold and silver particles, Analytical Chemistry 75, 6894–6900 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events, Journal of the American Chemical Society 127, 5043–5048 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor, Journal of the American Chemical Society 127, 2264–2271 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, Local electrical detection of single nanoparticle plasmon resonance, Nano Letters 7, 703–706 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, Plasmonic excitation of organic double heterostructure solar cells, Applied Physics Letters 90, 131102 (2007).

    Article  ADS  CAS  Google Scholar 

  20. D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, A biosensor based on magnetoresistance technology, Biosensors & Bioelectronics 13, 731–739 (1998).

    Article  CAS  Google Scholar 

  21. L. Lagae, R. Wirix-Speetjens, J. Das, D. Graham, H. Ferreira, P. P. F. Freitas, G. Borghs, and J. De Boeck, On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors, Journal of Applied Physics 91, 7445–7447 (2002).

    Article  ADS  CAS  Google Scholar 

  22. D. L. Graham, H. Ferreira, J. Bernardo, P. P. Freitas, and J. M. S. Cabral, Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications, Journal of Applied Physics 91, 7786–7788 (2002).

    Article  ADS  CAS  Google Scholar 

  23. R. Wirix-Speetjens, C. Liu, G. Reekmans, R. De Palma, W. Laureyn, and G. Borghs, Magnetoresistive biosensors based on active guiding of magnetic particles towards the sensing zone, Sensors and Actuators B-Chemical 128(1), 1–4 (2007).

    Article  CAS  Google Scholar 

  24. R. De Palma, G. Reekmans, C. Liu, R. Wirix-Speetjens, W. Laureyn, O. Nilsson, and L. Lagae, Magnetic bead sensing platform for the highly sensitive detection of proteins, Analytical Chemistry 79(22), 8669–8677 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. M. A. M. Gijs, Magnetic bead handling on-chip: New opportunities for analytical applications, Microfluid Nanofluid 1, 22–40 (2004).

    CAS  Google Scholar 

  26. R. Wirix-Speetjens, W. Fyen, K. D. Xu, J. De Boeck, and G. Borghs, A force study of on-chip magnetic particle transport based on tapered conductors, IEEE Transactions on Magnetics 41, 4128–4133 (2005).

    Article  ADS  CAS  Google Scholar 

  27. C. X. Liu, L. Lagae, and G. Borghs, Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation, Applied Physics Letters 90(18), 184109 (2007).

    Article  ADS  CAS  Google Scholar 

  28. H. A. Ferreira, N. Feliciano, D. L. Graham, L. A. Clarke, M. D. Amaral, and P. P. Freitas, Rapid DNA hybridization based on ac field focusing of magnetically labeled targetDNA, Applied Physics Letters 87, 013901 (2005).

    Article  ADS  CAS  Google Scholar 

  29. J. Wang, From DNA biosensors to gene chips, Nucleic Acids Research 28, 3011–3016 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. S. A. Soper, K. Brown, A. Ellington, B. Frazier, G. Garcia-Manero, V. Gau, S. I. Gutman, D. F. Hayes, B. Korte, J. L. Landers, D. Larson, F. Ligler, A. Majumdar, M. Mascini, D. Nolte, Z. Rosenzweig, J. Wang, and D. Wilson, Point-of-care biosensor systems for cancer diagnostics/prognostics, Biosensors & Bioelectronics 21, 1932–1942 (2006).

    Article  CAS  Google Scholar 

  31. J. El-Ali, Cells on chips, Nature 442, 403–411 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbet Lagae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Laureyn, W., Lagae, L. (2009). Microelectronics-Based Biosensors for the Detection of Proteins and Nucleic Acids. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_21

Download citation

Publish with us

Policies and ethics