Skip to main content

Abstract

The first part of this chapter is devoted to the main definitions of biosensors. Then, the scheme for biosensor operation is presented, followed by a history of biosensor science and the first successful publications on biosensors in 1960s are discussed. A classification of biosensors is presented. Specifically, biosensors can be classified according to the type of transducer and the biorecognition mode. The advantages and limits of each type of biosensor are discussed. Electrochemical biosensors are divided into the first, second, and third generation ones depending on the coupling principle of electrochemical and biochemical reactions. The advanced first generation of glucose biosensor is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences 102, 29–45 (1962).

    Article  PubMed  ADS  CAS  Google Scholar 

  2. S. J. Updike and J. P. Hiks, The enzyme electrode, Nature 214, 986–988 (1967).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. G. G. Guilbault and J. Montalvo, A urea-specific enzyme electrode, Journal of the Americal Chemical Society 91, 2164–2165 (1969).

    Article  CAS  Google Scholar 

  4. D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors: Recommended definitions and classification: (Technical Report), Pure and Applied Chemistry 71, 2333–2348 (1999).

    Article  CAS  Google Scholar 

  5. S. Schutz, M. J. Schoning, P. Schroth, U. Malkoc, B. Weissbecker, P. Kordos, H. Luth, and H. E. Hummel, An insect-based BioFET as a bioelectronic nose, Sensors and Actuators B-Chemical 65, 291–295 (2000).

    Article  Google Scholar 

  6. B. A. Cavic, G. L. Hayward, and M. Thompson, Acoustic waves and the study of biochemical macromolecules and cells at the sensor-liquid interface, Analyst 124, 1405–1420 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  7. W. Vercoutere and M. Akeson, Biosensors for DNA sequence detection, Current Opinion in Chemical Biology 6, 816–822 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. G. Sauerbrey, Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung, Zietschrift fur Physik 155, 206–222 (1959).

    Article  ADS  CAS  Google Scholar 

  9. R. A. Etchenique and E. J. Calvo, Gravimetric measurement in redox polymer electrodes with the EQCM beyond the Sauerbrey limit, Electrochemistry Communications 1, 167–170 (1999).

    Article  CAS  Google Scholar 

  10. H. B. Su, K. M. R. Kallury, M. Thompson, and A. Roach, Interfacial nucleic-acid hybridization studied by random primer P-32 labeling and liquid-phase acoustic network analysis, Analytical Chemistry 66, 769–777 (1994).

    Article  CAS  Google Scholar 

  11. J. Homola, Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry 377, 528–539 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. R. L. Rich and D. G. Myszka, Advances in surface plasmon resonance biosensor analysis, Current Opinion in Biotechnology 11, 54–61 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. W. M. Mullett, E. P. C. Lai, and J. M. Yeung, Surface plasmon resonance-based immunoassays, Methods 22, 77–91 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. A. I. Yaropolov, V. Malovik, S. D. Varfolomeev, and I. V. Berezin, Electroreduction of hydrogen peroxide on an electrode with immobilized peroxidase, Doklady Akademii Nauk SSSR 249, 1399–1401 (1979).

    CAS  Google Scholar 

  15. T. Ruzgas, E. Csцregi, J. Emnйus, L. Gorton, and G. Marko-Varga, Peroxidase-modified electrodes. Fundamentals and applications, Analytica Chimica Acta 330, 123–138 (1996).

    Article  CAS  Google Scholar 

  16. E. Katz, D. D. Schlereth, H. L. Schmidt, and A. J. J. Olsthoorn, Reconstitution of the quinoprotein glucose-dehydrogenase from its apoenzyme on a gold electrode surface-modified with a monolayer of pyrroloquinoline quinone, Journal of Electroanalytical Chemistry 368, 165–171 (1994).

    Article  CAS  Google Scholar 

  17. T. Larsson, A. Lindgren, T. Ruzgas, S. E. Lindquist, and L. Gorton, Bioelectrochemical characterisation of cellobiose dehydrogenase modified graphite electrodes: ionic strength and pH dependences, Journal of Electroanalytical Chemistry 482, 1–10 (2000).

    Article  CAS  Google Scholar 

  18. A. Lindgren, L. Gorton, T. Ruzgas, U. Baminger, D. Haltrich, and M. Schulein, Direct electron transfer of cellobiose dehydrogenase from various biological origins at gold and graphite electrodes, Journal of Electroanalytical Chemistry 496, 76–81 (2001).

    Article  CAS  Google Scholar 

  19. Y. Tian, L. Mao, T. Okajima, and T. Ohsaka, Superoxide dismutase-based third-generation biosensor for Superoxide anion, Analytical Chemistry 74, 2428–2434 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. X. Q. Wu, X. Y. Meng, Z. S. Wang, and Z. R. Zhang, Study on the direct electron transfer process of Superoxide dismutase, Bioelectrochemistry and Bioenergetics 48, 227–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. E. E. Ferapontova, T. Ruzgas, and L. Gorton, Direct electron transfer of heme- and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes, Analytical Chemistry 75, 4841–4850 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. T. Ikeda, F. Fushimi, K. Miki, and M. Senda, Direct bioelectrocatalysis at electrodes modified with D-gluconate dehydrogenase, Agricultural and Biological Chemistry 52, 2655–2658 (1988).

    CAS  Google Scholar 

  23. A. Sucheta, B. A. C. Ackrel, B. Cochran, and F. A. Armstrong, Diode like behaviour of a mitochondrial electron-transport enzyme, Nature 356, 361–362 (1992).

    Article  PubMed  ADS  CAS  Google Scholar 

  24. T. Matsue, H. C. Chang, I. Uchida, and T. Osa, Bioelectrocatalytic reduction of NAD+ to NADH on diaphorase modified electrodes, Tetrahedron Letters 29, 1551–1554 (1988).

    Article  CAS  Google Scholar 

  25. A. Sucheta, R. Cammack, J. Weiner, and F. A. Armstrong, Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport, Biochemistry 32, 5455–5465 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. A. I. Yaropolov, A. A. Karyakin, S. D. Varfolomeyev, and I. V. Berezin, Mechanism of H2-electrooxidation with immobilized hydrogenase, Bioelectrochemistry and Bioenergetics 12, 267–277 (1984).

    Article  CAS  Google Scholar 

  27. S. V. Morozov, E. E. Karyakina, N. A. Zorin, S. D. Varfolomeyev, S. Cosnier, and A. A. Karyakin, Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina, Bioelectrochemistry 55, 169–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. I. V. Berezin, V. A. Bogdanovskaya, S. D. Varfolomeev, M. R. Tarasevich, and A. I. Yaropolov, Bioelectrocatalysis. Equilibrium oxygen potential in the presence of laccase, Doklady Akademii Nauk SSSR 240, 615–618 (1978).

    CAS  Google Scholar 

  29. G. G. Guilbault, G. J. Lubrano, and D. N. Gray, Glass-metal composite electrodes, Analytical Chemistry 45, 2255–2259 (1973).

    Article  CAS  Google Scholar 

  30. G. G. Guilbault and G. J. Lubrano, Amperometric enzyme electrodes. Amino acid oxidase, Analytica Chimica Acta 69, 183–185 (1974).

    Article  PubMed  CAS  Google Scholar 

  31. G. G. Guilbault and G. J. Lubrano, An enzyme electrode for amperometric determination of glucose, Analytica Chimica Acta 64, 439–455 (1973).

    Article  PubMed  CAS  Google Scholar 

  32. F. W. Scheller, D. Pfeifer, F. Schubert, R. Reneberg, and D. Kirstein, in: Biosensors: Fundamental and Applications, edited by A. P. F. Turner, I. Karube, and J. S. Wilson (Oxford University Press, Oxford, 1987).

    Google Scholar 

  33. A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. G. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Ferrocene-mediated enzyme electrode for amperometric detection of glucose, Analytical Chemistry 56, 667–671 (1984).

    Article  PubMed  CAS  Google Scholar 

  34. A. A. Karyakin, O. V. Gitelmacher, and E. E. Karyakina, A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes, Analytical Letters 27, 2861–2869 (1994).

    CAS  Google Scholar 

  35. A. A. Karyakin and E. E. Karyakina, Prussian Blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors, Sensors and Actuators B-Chemical B57, 268–273 (1999).

    Article  CAS  Google Scholar 

  36. A. A. Karyakin, E. E. Karyakina, and L. Gorton, Amperometric biosensor for glutamate using Prussian Blue-based “artificial peroxidase” as a transducer for hydrogen peroxide, Analytical Chemistry 72, 1720–1723 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. J. Ruzicka and E. H. Hansen, Flow Injection Analysis (Wiley, New York, Toronto, 1988).

    Google Scholar 

  38. Y. L. Khmelnitsky, A. V. Levashov, N. L. Klyachko, and K. Martinek, Engineering biocatalytic systems in organic media with low water content, Enzyme and Microbial Technology 10, 710–724 (1988).

    Article  Google Scholar 

  39. H. Kise and H. Shirato, Enzymatic reactions in aqueous-organic media. V. Medium effect on the esterification of aromatic amino acids by a-chymotrypsin, Enzyme and Microbial Technology 10, 582–585 (1988).

    Article  CAS  Google Scholar 

  40. A. Zaks and A. M. Klibanov, Enzymatic catalysis in nonaqueous solvents, Journal of Biological Chemistry 263, 3194–3201 (1988).

    PubMed  CAS  Google Scholar 

  41. K. Griebenow and A. M. Klibanov, On protein denaturation in aqueous-organic mixtures but not in pure organic solvents, Journal of the American Chemical Society 118, 11695–11700 (1996).

    Article  CAS  Google Scholar 

  42. A. A. Karyakin, E. A. Kotel’nikova, L. V. Lukachova, E. E. Karyakina, and J. Wang, Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: Improvement of first-generation biosensors, Analytical Chemistry 74, 1597–1603 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. A. A. Karyakin, E. E. Karyakina, L. Gorton, O. A. Bobrova, L. V. Lukachova, A. K. Gladilin, and A. V. Levashov, The improvement of electrochemical biosensors using enzyme immobilisation from water-organic mixtures with the high content of organic solvent, Analytical Chemistry 68, 4335–4341 (1996).

    Article  CAS  Google Scholar 

  44. Q. Deng, B. Li, and S. Dong, Self-gelatinizable copolymer immobilized glucose biosensor based on Prussian Blue modified graphite electrode, Analyst 123, 1995–1999 (1998).

    Article  PubMed  ADS  CAS  Google Scholar 

  45. M. S. Lin and W. C. Shih, Chromium hexacyanoferrate based glucose biosensor, Analytica Chimica Acta 381, 183–189 (1999).

    Article  CAS  Google Scholar 

  46. I. L. Mattos, L. Gorton, T. Laurell, A. Malinauskas, and A. A. Karyakin, Development of biosensors based on hexacyanoferrates, Talanta 52, 791–799 (2000).

    Article  PubMed  Google Scholar 

  47. J. Z. Zhang and S. J. Dong, Cobalt(II)hexacyanoferrate film modified glassy carbon electrode for construction of a glucose biosensor, Analytical Letters 32, 2925–2936 (1999).

    Article  CAS  Google Scholar 

  48. R. Garjonyte and A. Malinauskas, Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer, Sensors and Actuators B-Chemical B56, 85–92 (1999).

    Article  CAS  Google Scholar 

  49. W. Sung and Y. Bae, A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant, Analytical Chemistry 72, 2177–2181 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. S. Kruger, S. Setford, and A. Turner, Assessment of glucose oxidase behaviour in alcoholic solutions using disposable electrodes, Analytica Chimica Acta 368, 219–231 (1998).

    Article  Google Scholar 

  51. J. Pei and X. Li, Amperometric glucose enzyme sensor prepared by immobilizing glucose oxidase on CuPtCl6 chemically modified electrode, Electroanalysis 11, 1266–1272 (1999).

    Article  CAS  Google Scholar 

  52. J. Wang, G. Rivas, and M. Chicharro, Iridium-dispersed carbon paste enzyme electrodes, Electroanalysis 8, 434–437 (1995).

    Article  Google Scholar 

  53. Z. Zhang, H. Liu, and J. Deng, A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode, Analytical Chemistry 68, 1632–1638 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Karyakin, A.A. (2009). Biosensors. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_16

Download citation

Publish with us

Policies and ethics