Skip to main content

Metal Oxide Nanocomposites: Synthesis and Characterization in Relation with Gas Sensing Phenomena

  • Conference paper
Sensors for Environment, Health and Security

Abstract

A novel class of advanced materials based on the nanometer-scaled heterogeneous metal oxides systems MIO - MIIO (nanocomposites) is discussed regarding gas sensor applications. Recent work focused on developing new types of highly selective sensor materials — complex oxide structure based on SnO2 nanocrystallites coated with catalysts Fe2O3, MoO3, and V2O5. The additives reduce the interactions between the SnO2 crystallites, inhibit the crystallite growth, and therefore stabilize the structure and electrical properties of non-homogeneous nanostructured composite materials. Depending on the molar ratio of their components, each system differs in nanostructure, redox properties, acidity/basicity of the surface. These parameters determine sensing and catalytic properties of the nanocrystalline oxide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Yamazoe, Toward innovations of gas sensor technology, Sens. Actuators B 108, 2–14 (2005)

    Article  CAS  Google Scholar 

  2. W. Gopel and K. D. Schierbaum, SnO2 sensors: current status and future prospects, Sens. Actuators B 26–27, 1–12 (1995)

    Article  Google Scholar 

  3. N. Barsan, M. Schweizer-Berberich, and W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius J. Anal. Chem. 365, 287–304 (1999)

    Article  CAS  Google Scholar 

  4. K. Takahata, in: Chemical Sensor Technology, edited by T. Seiyama (Elsevier, Amsterdam, 1988), pp. 39–55

    Google Scholar 

  5. E. Souteyrand, in: Les Capteurs Chimiques, edited by C. Pijolat (CMC2, Ecole Centrale de Lyon, 1997), pp. 52–62

    Google Scholar 

  6. T. H. Wolkenstein, The Electronic Theory of Catalysis on Semi-conductors (Pergamon, Oxford, 1963)

    Google Scholar 

  7. H. Idriss and M. A. Barteau, Active sites on oxides: from single crystals to catalysts, Adv. Catal. 45, 261–331 (2000)

    Article  CAS  Google Scholar 

  8. A. Cimino and F. S. Stone, Oxide sold solutions as catalysts, Adv. Catal. 47, 141–306 (2002)

    Article  CAS  Google Scholar 

  9. H.-J. Freund, M. Bäumer, and H. Kuhlenbeck, Catalysis and surface science: what do we learn from studies of oxide-supported cluster model systems? Adv. Catal. 45, 333–384 (2000)

    Article  CAS  Google Scholar 

  10. S. M. Kudryavtseva, A. A. Vertegel, S. V. Kalinin, N. N. Oleynikov, L. I. Ryabova, L. L. Meshkov, S. N. Nesterenko, M. N. Rumyantseva, and A. M. Gaskov, Effect of micro structure on the stability of nanocrystalline tin dioxide ceramics, J. Mater. Chem. 7, 2269–2272 (1997)

    Article  CAS  Google Scholar 

  11. O. Safonova, I. Bezverkhy, P. Fabritchny, M. Rumyantseva, and A. Gaskov, Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mossbauer spectroscopy and conductance measurements, J. Mater. Chem. 12, 1174–1178 (2002)

    Article  CAS  Google Scholar 

  12. M. N. Rumyantseva, O. V. Safonova, M. N. Boulova, L. I. Ryabova, and A. M. Gaskov. Dopants in nanocrystalline tin dioxide, Russ. Chem. Bull. 52(6), 1217–1238 (2003)

    Article  CAS  Google Scholar 

  13. M. N. Rumyantseva, V. V. Kovalenko, A. M. Gaskov, T. Pagnier, D. Machon, J. Arbiol, and J. R. Morante, Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostructure characterization, Sens. Actuators B 109(1), 64–74 (2005)

    Article  CAS  Google Scholar 

  14. E. A. Makeeva, M. N. Rumyantseva, and A. M. Gaskov, Synthesis, micro structure and gas-sensing properties of SnO2/MoO3 nanocomposites, Inorg. Materials 41(4), 370–377 (2005)

    Article  CAS  Google Scholar 

  15. M. N. Rumyantseva, A. M. Gaskov, N. Rosman, T. Pagnier, and J. R. Morante, Raman surface vibration modes in nanocrystalline SnO2 prepared by wet chemical methods: correlations with the gas sensors performances, Chem. Mater. 17(4), 893–901 (2005)

    Article  CAS  Google Scholar 

  16. V. V. Yuscshenko, Calculation of the acidity spectra of catalysts from temperature — programmed ammonia desorption data, Zh. Fiz. Khim. 71, 628–632 (1997)

    Google Scholar 

  17. R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cryst. B 25, 925–949 (1969)

    Article  CAS  Google Scholar 

  18. P. B. Fabrichnyi, A. M. Babeshkin, A. N. Nesmeyanov, and V. N. Onuchak, Mössbauer effect on tin-119 impurity nuclei in α-ferric oxide, Fiz. Tverd. Tela 12, 2032–2034 (1970)

    CAS  Google Scholar 

  19. V. V. Kovalenko, M. N. Rumyantseva, P. B. Fabritchnyi, and A. M. Gaskov, The unusual distribution of the constituants in the (Fe2O3)0.8(SnO2)0.2 nanocomposite evidenced by 57Fe and 119Sn Mössbauer spectroscopy, Mendeleev Commun. 14(4), 140–141 (2004)

    Article  CAS  Google Scholar 

  20. L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Rumyantseva, Structural characterization of nanocrystalline SnO2 by X-Ray and Raman Spectroscopy, J. Solid State Chem. 135, 78–85 (1998)

    Article  ADS  CAS  Google Scholar 

  21. M. Boulova, A. Galerie, A. Gaskov, and G. Lucazeau, Reactivity of SnO2-CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study, Sens. Actuators B 71, 134–139 (2000)

    Article  Google Scholar 

  22. W. Kündig, H. Bömmel, G. Constabaris, and R. H. Lindquist, Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect, Phys. Rev. 142, 327–333 (1966)

    Article  ADS  Google Scholar 

  23. P. B. Fabritchnyi, A. M. Babeshkin, and A. N. Nesmeianov, Etude par effet Mössbauer de structure hyperfine nucleaire de 119Sn dans α-Fe2O3, J. Phys. Chem. Solids 32, 1701–1703 (1971)

    Article  ADS  Google Scholar 

  24. P. B. Fabritchnyi, E. V. Lamykin, A. M. Babeshkin, and A.N. Nesmeianov, Étude de transition de morin dans l’hématite (α-Fe2O3) contenant l’impureté d’étain par effet Mössbauer sur 119Sn et 57Fe, Solid State Commun. 11, 343–348 (1972)

    Article  ADS  Google Scholar 

  25. V. V. Berentsveig, Z. A. Hasan, P. B. Fabritchnyi, T. M. Ivanova, and A. P. Rudenko, Physico-chemical properties of iron-tin mixed oxide catalysts in cyclohexane oxidation, React. Kinet. Catal. Lett. 15, 239–243 (1980)

    Article  CAS  Google Scholar 

  26. D. A. Khramov and V. S. Urusov, Study of solid solutions in α-Fe2O3-SnO2 by Mössbauer effect, Inorg. Materials 19(11), 1880–1886 (1983)

    CAS  Google Scholar 

  27. S. Ichiba and T. Yamaguchi, Mössbauer study of tin in α-Fe2O3, Chem. Lett. 13(10), 1681–1682 (1984)

    Article  Google Scholar 

  28. F. Schneider, K. Melzer, H. Mehner, and G. Dehe, Tin-119 hyperfine fields in α-Fe2O3, Phys. Status Solidi A 39(2), K115–K117 (1977)

    Article  CAS  Google Scholar 

  29. F. J. Berry, C. Greaves, J. G. McManus, M. Mortimer, and G. Oates, The structural characterization of tin- and titanium-doped α-Fe2O3 prepared by hydrothermal synthesis, J. Solid State Chem. 130(2), 272–276 (1997)

    Article  ADS  CAS  Google Scholar 

  30. V. V. Kovalenko, Synthesis of SnO2-Fe2O3 and SnO2-V2O5 nanocomposites and study of interaction of them with the gas phase, Ph.D. thesis (Moscow State University, 2006)

    Google Scholar 

  31. J. Arbiol, J. R. Morante, P. Bouvier, T. Pagnier, E. Makeeva, M. Rumyantseva, and A. Gaskov, SnO2/MoO3-nanostructure and alcohol detection, Sens. Actuators B 118, 156–162 (2006)

    Article  CAS  Google Scholar 

  32. F. Harb, B. Gerand, G. Nowogrocki, and M. Figlarz, Structural filiation between a new molybdenum oxide hydrate (MoO3l/3H2O) and a new monoclinic form of MoO3 obtained by dehydration, Solid State Ionics 32–33, 84–90 (1989)

    Google Scholar 

  33. M. S. Moreno, R. F. Egerton, and P.A. Midgley, Differentiation of tin oxides using electron energy-loss spectroscopy, Phys. Rev. B 69, 233304/1–233304/4 (2004)

    ADS  CAS  Google Scholar 

  34. M. S. Moreno, R. F. Egerton, J. J. Rehr, and P. A. Midgley, Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations, Phys. Rev. B 71, 035103/1–035103/6 (2005)

    ADS  CAS  Google Scholar 

  35. D. Wang, D. S. Su, and R. Schlögl, Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO, Z. Anorg. Allg. Chem. 630, 1007–1014 (2004)

    Article  CAS  Google Scholar 

  36. A. A. Tsyganenko, D. V. Pozdnyakov, and V. N. Filimonov, Infrared study of surface species arising from ammonia adsorption on oxide surfaces, J. Mol. Struct. 29, 299–318 (1975)

    Article  ADS  CAS  Google Scholar 

  37. I. E. Wachs, J.-M. Jehng, and W. Ueda, Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts, J. Phys. Chem. B 109, 2275–2284 (2005)

    Article  PubMed  CAS  Google Scholar 

  38. C. Morterra, M. P. Mentruit, and G. Cerrato, Acetonitrile adsorption as an IR spectroscopic probe for surface acidity/basicity of pure and modified zirconias, Phys. Chem. Chem. Phys. 4, 676–687 (2002)

    Article  CAS  Google Scholar 

  39. B. M. Reddy, K. Narsimha, C. Sivaraj, and P. K. Rao, Titration of active sites for partial oxidation of methanol over V2O5/SnO2 and MoO3/SnO2 catalysts by a low-temperature oxygen chemisorption technique, Appl. Catal. 55, L1–L4 (1989)

    Article  CAS  Google Scholar 

  40. P. J. Pomonis and J. C. Vickerman, Methanol oxidation over vanadium-containing model oxide catalysts influence of charge-transfer effects on selectivity, Faraday Discuss. Chem. Soc. 71, 247–262 (1981)

    Article  Google Scholar 

  41. K. Chen, A. T. Bell, and E. Iglesia, Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides, J. Phys. Chem. B 104, 1292–1299 (2000)

    Article  CAS  Google Scholar 

  42. V. V. Kovalenko, A. A. Zhukova, M. N. Rumyantseva, A. M. Gaskov, V. V. Yushchenko, I. I. Ivanova, and T. Pagnier, Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives, Sens. Actuators B 126, 52–55 (2007)

    Article  CAS  Google Scholar 

  43. V. A. Burmistrov, Hydrated Oxides of IV and V Groups (Nauka, Moscow, 1986)

    Google Scholar 

  44. M. W. Abee and D.F. Cox, NH3 chemisorption on stoichiometric and oxygen-deficient SnO2 (110) surfaces, Surf. Science 520, 65–77 (2002)

    Article  ADS  CAS  Google Scholar 

  45. G. Ramis, M. A. Larrubia, and G. Busca, On the chemistry of ammonia over oxide catalysts: Fourier transform infrared study of ammonia, hydrazine and hydroxylamine adsorption over iron-titania catalyst, Topics in Catal. 11/12, 161–166 (2000)

    Article  CAS  Google Scholar 

  46. M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yushchenko, I. Ivanova, A. Ponzoni, G. Faglia, and E. Comini, Nanocomposites SnO2/Fe2O3: sensor and catalytic properties, Sens. Actuators B 118, 208–214 (2006)

    Article  CAS  Google Scholar 

  47. H.-Y. Lin, Y.-W. Chen, and C. Li, The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta 400, 61–67 (2003)

    Article  CAS  Google Scholar 

  48. X. Wang, and Y.-C. Xie, Total oxidation of CH4 on iron-promoted tin oxide: novel and thermally stable catalysts, React. Kinet. Catal. Lett. 72, 229–237 (2001)

    Article  CAS  Google Scholar 

  49. P. W. Park, H. H. Kung, D.-W. Kim, and M. C. Kung, Characterization of SnO2/Al2O3 lean NOX catalysts, J. Catal. 184, 440–454 (1999)

    Article  CAS  Google Scholar 

  50. F. Okada, A. Satsuma, A. Furuta, A. Miyamoto, T. Hattori, and Y. Murakami, Surface active sites of V2O5-SnO2 catalysts, J. Phys. Chem. 94, 5900–5908 (1990)

    Article  CAS  Google Scholar 

  51. M. Niwa, Y. Habuta, K. Okumura, and N. Katada, Solid acidity of metal oxide monolayer and its role in catalytic reactions, Catal. Today 87, 213–218 (2003)

    Article  CAS  Google Scholar 

  52. Y. Habuta, N. Narishige, K. Okumura, N. Katada, and M. Niwa, Catalytic activity and solid acidity of vanadium oxide thin layer loaded on TiO2, ZrO2, and SnO2, Catal. Today 78,131–138 (2003)

    Article  CAS  Google Scholar 

  53. M. Ai, The oxidation activity and acid-base properties of SnO2-based binary catalysts. I. The SnO2-V2O5 system, J. Catal. 40, 318–326 (1975)

    Article  CAS  Google Scholar 

  54. E. M. Gaigneaux, S. R. G. Carrazan, P. Ruiz, and B. Delmon, Role of the mutual contamination in the synergetic effects between MoO3 and SnO2, Thermochim. Acta 388, 27–40 (2002)

    Article  CAS  Google Scholar 

  55. P. Arnoldy, J. C. M. De Jonge, and J. A. Moulijn, Temperature-programmed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide, J. Phys. Chem. 89, 4517–4526 (1985)

    Article  CAS  Google Scholar 

  56. F. Goncalves, P. R. S. Medeiros, J. G. Eon, and L. G. Appel, Active sites for ethanol oxidation over SnO2-supported molybdenum oxides, Appl. Catal. A 193, 195–202 (2000)

    Article  CAS  Google Scholar 

  57. N. G. Valente, L. A. Arrua, and L. E. Cadus, Structure and activity of Sn-Mo-O catalysts: partial oxidation of methanol, Appl. Catal. A 205, 201–214 (2001)

    Article  CAS  Google Scholar 

  58. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides, J. Mol. Catal. A 155, 193–200 (2000)

    Article  CAS  Google Scholar 

  59. H. Idriss, and E. G. Seebauer, Reactions of ethanol over metal oxides, J. Mol. Catal. A 152, 201–212 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gaskov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Gaskov, A., Rumyantseva, M. (2009). Metal Oxide Nanocomposites: Synthesis and Characterization in Relation with Gas Sensing Phenomena. In: Baraton, MI. (eds) Sensors for Environment, Health and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9009-7_1

Download citation

Publish with us

Policies and ethics