Skip to main content

Advances in Crop Protection Practices for the Environmental Sustainability of Cropping Systems

  • Chapter
Integrated Pest Management: Innovation-Development Process

Abstract

Abstract The era of green revolution has witnessed a tremendous change in the outlook of agriculture development. Green revolution emphasized the increased availability of food grains through the use of high yielding varieties, plant protection measures, and application of increased dosage of synthetic fertilizers, coupled with irrigation management. It not only increased the food grain production but also the utilization of synthetic fertilizers and pesticides. Over-reliance on the use of pesticides during green revolution has resulted in environmental pollution, ground water contamination, resurgence of pests, and poisoning of food sources, animals and human beings. Extensive application of fertilizers has changed the soil properties and acts as a major barrier in sustainable agriculture production. Farmers and agro-based industries could thrive only through the technological innovation that goes in harmony with IPM practices. Several advances have been made in the research and implementation of control strategies for the management of pests and diseases, which could be integrated into a sustainable agricultural system. The chapter focuses on these advances in various control measures and gives an account of various successful IPM programs from around the world. The success of any IPM program would depend on the understanding and acceptance from the farmers, and the integrated approach needed in form of policy making, communication and networking from the governmental and non-governmental agencies. The policy makers have to be advised to allocate budget for the extensive training, motivation of farmers and promotion of IPM through the establishment of IPM networks. Restructuring, both research and policy issues, will pave way for sustainable agriculture production through IPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abawi, G.S., Crosier, D.C. and Cobb, A.C. 1985. Root Rot of Snap Beans in New York. New York‘s Food Life Sci. Bull. 110, 7pp.

    Google Scholar 

  • Abdul Kareem, A. and Gunasekaran, K. 1998. Botanicals and host plant resistance in integrated pest management. In: Asaf Ali, K., Rajasekaran, B. and Sathiah, N. (eds), Training on Host Plant Resistance to Insects and Mites in Crop Plants. Tamil Nadu Agricultural University, Coimbatore, pp. 267–273.

    Google Scholar 

  • Acquaye, A.K.A., Alston, J.M. and Pardey, P.G. 2003. Post-war productivity patterns in U.S. agriculture: Influences of aggregation procedures in a state-level analysis. American Journal Agriculture & Economics 85: 59–80.

    Google Scholar 

  • Affolter, F. and Carl, K.P. 1986. The Natural Enemies of the Apple Ermine Moth Yponomeuta malinellus in Europe: A Literature Review. CAB International Institute of Biological Control, Delemont, November 1986, 30pp.

    Google Scholar 

  • Ahrens, W. and Breustedt, E. 1984. Einfluβ des echten Rübenmehltaus auf den Zuckerertrag im Trockenjahr 1983. Die Zuckerrübe 33(1): 42–44.

    Google Scholar 

  • Alyokhin, A. and Sewell, G. 2004. Changes in a lady beetle community following the establishment of three alien species. Biological Invasions 6: 463–471.

    Google Scholar 

  • Arora, R. and Dhaliwal, G.S. 1994. Botanical pesticides in insect pest management. In: Dhaliwal, G.S. and Kansal, B.D. (eds), Management of Agricultural Pollution in India. Commonwealth Publishers, New Delhi, pp. 213–245.

    Google Scholar 

  • Bargabus, R.L., Zidack, N.K., Sherwood, J.E. and Jacobsen, B.J. 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological & Molecular Plant Pathology 61: 289–298.

    CAS  Google Scholar 

  • Belanger, R.R., Jarvis, W.R., and Traquair, J.A. 2002. Sphaerotheca and Erysiphe powdery mildews (Erysiphaceae). In: Mason, P.G. and Huber, J.T. (eds), Biological Programmes in Canada 1981–2000. CABI, Wallingford, pp. 501–505.

    Google Scholar 

  • Benbrook, C.M., Groth, E., III, Halloran, J.M., Hansen, M.K. and Marquardt, S. 1996. Pest Management at the Crossroads. Consumers Union, New York.

    Google Scholar 

  • Bertrand, H., Nalin, R., Balli, R, and Cleyet-Marel, J.C. 2001. Isolation and identification of the most efficient plant growth promoting bacteria associated with canola (Brassica mapus). Biology & Fertility of Soils 33: 152–156.

    Google Scholar 

  • Bethlenfalvay, G.J. and Schüepp, H. 1994. Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi, S. and Schüepp, H. (eds), Impact of Arbuscular mycorrhizas on Sustainable Agriculture and Natural Ecosystems, Birkhauser-Verlag, Basel, pp. 117–131.

    Google Scholar 

  • Bhatnagar, V.S. and Davies, J.C. 1980. Entomological studies in intercropped Pigeonpea systems at ICRISAT Centre; future developments and collaborative needs. In: Proceedings of the International Workshop on Pigeonpea, 2, ICRISAT / ICAR, Patencheru, December 15–19, pp.341–347.

    Google Scholar 

  • Blight, M.M., Dawson, G.W., Pickett, J.A. and Wadhams, L.J. 1991. The identification and biological activity of the aggregation pheromone of Sitona lineatus. Annals of Applied Biology 27: 137–142.

    Google Scholar 

  • Brannen, P.M. and Kenney, D.S. 1997. Kodiak–A successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology & Biotechnology 19: 169–171.

    CAS  Google Scholar 

  • Burdman, S., Kigel, J. and Okon, Y. 1997. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biology & Biochemistry 29: 923–929.

    CAS  Google Scholar 

  • Chelliah. S. and Uthamasamy, S. 1998. Host Plant Resistance to Insect Pests: Principles and Practices. APC Publications, New Delhi, p. 384.

    Google Scholar 

  • Chen, J., Abawi, G.S. and Zuckerman, B.M. 2000. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendment against Meloidogyne hapla infecting lettuce. Journal of Nematology 32: 70–77.

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng, T.F.C., Bloemberg, G.V., van der Bij, A.J., van der Drift, K.M.G.M., Schripsema, J., Kroon, B., Scheffer, R.J., Keel, C., Bakker, P.A.H.M., Tichy, H.V., de Bruijn, F.J., Thomas-Oates, J.E. and Lugtenberg, B.J.J. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant Microbe Interactions 11: 1069–1077.

    CAS  Google Scholar 

  • Clarkson, J.P., Scruby, A., Mead, A., Wright, C., Smith, B. and Whipps, J.M. 2006. Integrated control of Allium white rot with Trichoderma viride, tebuconazole and composted onion waste. Plant Pathology 55: 375–386.

    CAS  Google Scholar 

  • Collins, D.P. and Jacobsen, B.J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biological Control 26: 153–161.

    Google Scholar 

  • Connick, W.J., Jr., Daigle, D.J., Boyette, C.D., Williams, K.S., Vinyard, B.T. and Quimby, P.C., Jr., 1996. Water activity and other factors that affect the viability of Colletotrichum truncatum conidia in wheat flour-kaolin granules (‘Pesta’). Biocontrol Science 6: 277–284.

    Google Scholar 

  • Cook, R.J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Phytopathology 31: 5340.

    Google Scholar 

  • Cook, S.M., Khan, Z.R. and Picket, J.A. 2007. The use of push-pull strategies in integrated pest management. Annual Review of Entomology 52: 375–400.

    PubMed  CAS  Google Scholar 

  • Cossentine, J.E. and Kuhlmann, U. 2000. Status of Ageniaspis fuscicollis (Hymenoptera: Encrytidae) in British Columbia: An introduced parasitoid of the apple armine moth, Yponomeuta malinellus Zeller (Lepidoptera: Yponomeutidae). The Canadia Entomologist 132: 685–690.

    Google Scholar 

  • Cossentine, J.E. and Kuhlmann, U. 2001. Yponomeuta malinellus Zeller, Apple ermine moth (Lepidoptera: Yponomeutidae). In: Mason, P.G. and Huber, J.T. (eds), Biological Programmes in Canada 1981–2000. CABI, Wallingford, pp. 275–278.

    Google Scholar 

  • Cossentine, J.E. and Kuhlmann, U. 2007. Introductions of parasitoids to control the apple ermine moth in British Columbia. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 13–19.

    Google Scholar 

  • Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. 1996. Colonisation patterns patterns of root tissues by Phytophthora nicotianae var parasitica related to reduced diseases in mycorrhizal tomato. Plant Soil 185: 223–232.

    CAS  Google Scholar 

  • Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S. and Gianinazzi- Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interaction 11: 1017–1028.

    CAS  Google Scholar 

  • Creamer, N.G., Bennett, M.A. and Stinner, B.R. 1997. Evaluation of cover crop mixtures for use in vegetable production systems. Horticultar Science 32: 866–870.

    Google Scholar 

  • Coventry, E., Noble, R., Mead, A. and Whipps, J.M. 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. European Journal of Plant Pathology 111: 101–112.

    Google Scholar 

  • Davies, R.M. and Menge, J.A. 1980. Influence of Glomus fasiculatus and soil phosphorous on Phytophthora root rot of citrus. Phytopathology 70: 447–452.

    Google Scholar 

  • De la Peña, E., Echeverría, S.R., Van der Putten, W.H., Freitas, H. and Moens, M. 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist 169: 829–840.

    PubMed  Google Scholar 

  • Dent, D.R. 1995. Integrated Pest Management. Chapman & Hall, London, p. 356.

    Google Scholar 

  • Dhaliwal, G.S. and Arora, R. and Singh, B. 2000. Intensive agriculture and pest problems: A case study in Punjab. Indian Journal of Ecology 27: 109–130.

    Google Scholar 

  • Di Cello, F., Bevivino, L., Chiarini, R., Fani, R., Paffetti, D., et al. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Applied & Environmental Microbiology 63: 4485–4493.

    Google Scholar 

  • Dick, W.A. and McCoy, E.L. 1993. Enhancing soil fertility by addition of compost. In: Hoitink, H.A.J. and Keener, H.M. (eds), Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Renaissance Publications. Worthington, OH, pp. 622–644.

    Google Scholar 

  • Driesche, R.V. 2007. Introductions of parasitoids to ontrol the imported cabbageworm. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 20–27.

    Google Scholar 

  • Ehlers, R.-U. 2007. Entomopathogenic nematodes: From science to commercial use. From chemical to biological control in Canadian greenhouse crops. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 136–151.

    Google Scholar 

  • Elmholt, S. 1991. Side effects of propiconazole (tilt 250 ECTM) on non-target soil fungi in a field trial compared with natural stress effects. Microbial Ecology 22: 99–108.

    CAS  Google Scholar 

  • Emmert, E.A.B. and Handelsman, J. 1999. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiology Letters 171: 1–9.

    PubMed  CAS  Google Scholar 

  • Fravel, D.R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annual Review of Phytopathology 26: 75–91.

    CAS  Google Scholar 

  • Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Annual Review of Phytopathology 43: 337–359.

    PubMed  CAS  Google Scholar 

  • Felton, G.W. and Dahlman, D.L. 1984. Allelochemical induced stress: Effects of 1-canavanine on the pathogenicity of Bacillus thuringiensis in Manduca sexta. Journal of Invertebrate Pathology 44: 187–191.

    Google Scholar 

  • Fernandez, S., Groden, E., Vandenberg, J.D. and Furlong, M.J. 2001. The effect of mode of exposure to Beauveria bassiana on conidia acquisition and host mortality of Colorado potato beetle, Leptinotarsa decemlineata. Journal of Invertebrate Pathology 77: 217–226.

    PubMed  CAS  Google Scholar 

  • Fernando, W.G.D., Nakkeeran, S., Zhang, Y. and Savchuk, S. 2007. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection 26: 100–107.

    Google Scholar 

  • Garbeva, P., Van Veen, J.A. and Van Elsas, J.D. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology 42: 243–270.

    PubMed  CAS  Google Scholar 

  • Ghosh, P.K. 1999. Biosafety guidelines: International comparisons. In: Proceedings of the Workshop on Genetically Modified Plants: Benefits and Risks. New Delhi, June 24, 1999, pp. 52–65.

    Google Scholar 

  • Gilbert, G.S., Parke, J, Clayton, M.K. and Handelsman, J. 1993. Effect of an introduced bacterium on bacterial communities of roots. Ecology 74: 840–854.

    Google Scholar 

  • Gillespie, D., McGregor, R., Sanchez, J.A., VanLaerhoven, S., Quiring, D., Roitberg, B., Foottit, R., Scwartz, M. and Shipp, L. 2007. An endemic omnivorous predator for control of greenhouse pests. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 128–135.

    Google Scholar 

  • Guetsky, R., Elad, Y., Shtienberg, D. and Dinoor, A. 2002. Establishment, survival and activity of the biocontrol agents Pichia guilermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol, Science & Technology 12: 705–714.

    Google Scholar 

  • Gugino, B.K., Carroll, J.E., Widmer, T.L., Chen, P. and Abawi, G.S. 2007. An IPM program for managing fungal leaf blight diseases of carrot in New York. Plant Disease 91: 59–65.

    Google Scholar 

  • Gyamfi, S., Pfeifer, U., Stierschneider, M. and Sessitch, A. 2002. Effects of transgenic glucosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiology Ecology 41: 181–190.

    CAS  PubMed  Google Scholar 

  • Hajek, A.E. 2007. Introduction of a fungus into North America for control of gypsy moth. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 53–62.

    Google Scholar 

  • Harrier, L.A. and Watson, C.A. 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science 60: 149–157.

    PubMed  CAS  Google Scholar 

  • Hervas, A., Landa, B., Datnoff, L.E. and Jimenez-Diaz, R.M. 1998. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biological Control 13: 166–176.

    Google Scholar 

  • Hoitink, H.A.J. and Boehm, M.J. 1999. Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenone. Annual Review of Phytopathology 37: 427–446.

    PubMed  CAS  Google Scholar 

  • Hoitink, H.A.J. and Fahy, P.C. 1986. Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology 24: 93–114.

    Google Scholar 

  • Hollingsworth, C.S. and Coli, W.M. 2001. IPM adoption in northeastern U.S.: An examination of the IPM continuum. American Journal of Alternative Agriculture 16: 177–183.

    Article  Google Scholar 

  • Huang, J., Hu, R., Pray, C., Qiao, F. and Rozelle, S. 2003. Biotechnology as an alternative to chemical pesticides: A case study of Bt cotton in China. Agricultural Economics 29: 55–67.

    Google Scholar 

  • Hwang, J., Chiton, W.S. and Benson, D.M. 2002. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biological Control 25: 56–63.

    CAS  Google Scholar 

  • Ishii, H. 2006. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Japan Agricultural Research Quarterly 40: 205–211.

    CAS  Google Scholar 

  • Jackson, T.A. 2007. A novel bacterium for control of grass grub. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 160–168.

    Google Scholar 

  • Jacobsen, B.J. 2004. Resistance management strategies for plant pathogens. In: Management of Pest Resistance: Strategies Using Crop Management, Biotechnology, and Pesticides. Special Publication No. 24. Council for Agricultural Science and Technology, Ames, IA, USA, p. 150.

    Google Scholar 

  • Jacobsen, B.J. and Backman, P.A. 1993. Biological and cultural plant disease controls: Alternatives and supplements to chemicals in IPM systems. Plant Disease 77: 311–315.

    Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T.M. and Steinberg, C. 2007. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biology & Biochemistry 39: 1–23.

    CAS  Google Scholar 

  • Jayakumar, V., Bhaskaran, R. and Tsushima, S. 2007. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Canadian Journal of Microbiology 53: 196–206.

    PubMed  CAS  Google Scholar 

  • Jayaraj, S. 1987. Integrated Pest Management in Various Cropping Systems. National Symposium on Alternatives to Synthetic Insecticides in Integrated Pest Management Systems, Madurai Kamaraj University, Madurai, pp. 11–17.

    Google Scholar 

  • Jayaraj, S. 1990. Genetic resources for resistance to pests and diseases of major crops. In: Swaminathan, M.S. and Jana, S. (eds), Biodiversity: Implications for Global Food Security. McMillan India Ltd., New Delhi, pp. 89–100.

    Google Scholar 

  • Jayaraj, S., Ananthakrishnan, T.N. and Veeresh, G.K. 1994. Biological Pest Control in India: Progress and Perspectives. RGICS Project No. 2 Rajiv Gandhi Institute for Contemporary Studies, New Delhi, 94pp.

    Google Scholar 

  • Jarvis, W.R., Traquair, J.A. and Belanger, R.R. 2007. Sporodex®, fungal biocontrol of powdery mildew in greenhouse crops. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 224–233.

    Google Scholar 

  • Kavitha, K., Mathiyazhagan, S., Sendhilvel, A., Nakkeeran, S., Chandrasekar, G. and Fernando, W.G.D. 2005. Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Archives of Phytopathology and Plant Protection 38: 69–76.

    CAS  Google Scholar 

  • Kfir, R., Overholt, W.A., Khan, Z.R. and Polaszek, A. 2002. Biology and management of economically important lepidopteran cereal stem borers in Africa. Annual Review of Entomology 47: 701–731.

    PubMed  CAS  Google Scholar 

  • Khan, Z.R. and Pickett, J.A. 2004. The ‘push-pull’ strategy for stemborer management: A case study in exploiting biodiversity and chemical ecology. In: Gurr, G.M., Wratten, S.D. and Altieri, M.A. (eds), Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. CABI, Wallington, Oxon, pp. 155–164.

    Google Scholar 

  • Khaosaad, T., Garci‘a-Garrido, J.M., Steinkellner, S. and Vierheilig, H. 2007. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology & Biochemistry 39: 727–734.

    CAS  Google Scholar 

  • Kloepper, J.W. and Schroth, M.N. 1981. Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71: 590–592.

    Google Scholar 

  • Koeller, W. 2004. Pathogens. Page 17 in: Management of Pest Resistance: Strategies Using Crop Management, Biotechnology, and Pesticides. Special Publication No. 24. Council for Agricultural Science and Technology, Ames, IA.

    Google Scholar 

  • Kokalis-Burelle, N., Vavrina, C.S., Reddy, M.S. and Kloepper, J.W. 2003. Amendment of Muskmelon and Watermelon transplant media with plant growth-promoting Rhizobacteria: Effects on disease and nematode resistance. Horticulture Technology 13: 476–482.

    Google Scholar 

  • Kokalis-Burelle, N., Vavrina, C.S., Rosskopf, E.N. and Shelby, R.A. 2002. Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for Tomato and Pepper production in Florida. Plant and Soil 238: 257–266.

    CAS  Google Scholar 

  • Korsten, L., De Villiers, E.E., Wehner, F.C. and Kotze, J.M. 1997. Field sprays of Bacillus subtilis for control of preharvest fruit diseases of avocado in South Africa. Plant Disease 81: 455–459.

    CAS  Google Scholar 

  • Kovach, J., Petzoldt, R. and Harman, G.E. 2000. Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biological Control 18: 235–242.

    Google Scholar 

  • Kredics, L., Antal, Z., Manczinger, L. and Nagy, E. 2001. Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Letters of Applied Microbiology 33: 112–116.

    CAS  Google Scholar 

  • Kurle, J.E., Grau, C.R., Oplinger, E.S. and Mengistu, A. 2001. Tillage, crop sequence and cultivar effects on Sclerotinia stem rot incidence and yield in soybean. Agronomy Journal 93: 973–982.

    Article  Google Scholar 

  • Larkin, R.P. and Griffin, T.S. 2006. Control of soilborne potato diseases using Brassica green manures. Crop Protection, doi:10.1016/j.cropro.2006.10.004

    Google Scholar 

  • Larson, B. 2004. Integrated Management of Cercospora Leaf Spot. M.S. Thesis. Montana State University, Bozeman, MT.

    Google Scholar 

  • Leon, M.C.C., Stone, A. and Dick, R.P. 2006. Organic soil amendments: Impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality. Applied Soil Ecology 31: 199–210.

    Google Scholar 

  • Ligon, J.M., Hill, D.S., Hammer, P.E., Torkewitz, N.R., Hofmann, D., Kempf, H.J. and van Pee, K.H. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pesticide Management Science 56: 688–695.

    CAS  Google Scholar 

  • Manickam, K. and Rajappan, K. 1999. Field efficacy of plant extracts and chemicals against greengram leaf curl disease. Indian Journal of Virology 15: 35–37.

    Google Scholar 

  • Manjula, K. and Podile, A.R. 2001. Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Canadian Journal of Microbiology 47: 618–625.

    PubMed  CAS  Google Scholar 

  • Marques, E.J., Vilas Boas, A.M. and Pereira, C.E.F. 1981. Orientacos technicas para a producao do fungo entomogeno Metarhizium anisopliae (Metschn.) em laboratorios setoriais. Boletim Tecnico Planalsucar 3: 1–23.

    Google Scholar 

  • Matheron, M.E. and Porchas, M. 2000. Evaluation of Fungicide Performance for Control of Powdery Mildew on Lettuce in 2000. Online publication no. AZ1177 in: Vegetable: College of Agriculture Report 2000, College of Agriculture, the University of Arizona, Tucson.

    Google Scholar 

  • Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D. and Defago, G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 90–195.

    Google Scholar 

  • Michaud, J.P. 2004. Natural mortality of Asian citrus psyllid (Homoptera: Psyllidae) in central Florida. Biological Control 29: 260–269.

    Google Scholar 

  • Molla, A.H., Shamsuddin, Z.H. and Saud, H.M. 2001. Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Community Soil Science & Plant Analysis 32: 2177–2187.

    CAS  Google Scholar 

  • Morandi, D. 1996. Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions and their potential role in biological control. Plant Soil 185: 241–251.

    CAS  Google Scholar 

  • Morgan-Jones, G. and Rodriguex-Kabana, R. 1985. Phytonematode pathology: Fungal modes of action-A perspective. Nematropica 15: 107–114.

    Google Scholar 

  • Morse, J.G. and Luck, R.F.G. 2000. The History of Integrated Pest Management of Citrus in California. Proceedings of the International Society of Citriculture.

    Google Scholar 

  • Moscardi, F. 2007. A nucleopolyhedrovirus for control of the velvetbean caterpillar in Brazilian soybeans. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 344–352.

    Google Scholar 

  • Mullen, J.D., Alston, J.M., Sumner, D.A., Kreith, M.T. and Kuminoff, N.V. 2005. The payoff to public investments in pest-management R&D: General issues and a case study emphasizing integrated pest management in California. Review of Agricultural Economics 27: 558–573.

    Google Scholar 

  • Nakayama, T., Homma, Y., Hashidoko, Y., Mitzutani, J. and Tahara, S. 1999. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Applied and Environmental Microbiology 65: ,4334–4339.

    PubMed  CAS  Google Scholar 

  • Nandakumar, R., Babu, S., Viswanathan, R., Sheela, J., Raguchander, T. and Samiyappan, R. 2001. A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46: 493–510.

    Google Scholar 

  • Natural systems agriculture. 2007. http://www.umanitoba.ca/outreach/naturalagriculture/articles/ wheatintercrop.html

  • Osburn, R.M., Milner, J.L., Oplinger, E.S., Smith, R.S. and Handelsman, J. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Disease 79: 551–556.

    Google Scholar 

  • Pera, A., Vallani, G., Sireno, I., Bianchin, M.L. and De Bertoldi, M. 1983. Effect of organic matter on rhizosphere microorganisms and root development of sorghum plants in two different soils. Plant Soil 74: 3–18.

    Google Scholar 

  • Perucci, P. 1990. Effect of addition of municipal solid waste compost on microbial biomass and enzyme activities in soil. Biology & Fertility of Soils 10: 221–226.

    Google Scholar 

  • Peshin, R., Kalra, R., Dhawan, A.K. and Kumar, T. 2007. Evaluation of insecticide resistance management based integrated pest management programme. AI & Society 21: 357–381.

    Google Scholar 

  • Picard, C., Di Cello, F., Ventura, M., Fani, R. and Guckert, A. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied & Environmental Microbiology 66: 948–955.

    CAS  Google Scholar 

  • Picó, Y., Font, G., Ruiz, M.J. and Fernández, M. 2006. Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety. Mass Spectrometry Reviews 25: 917–960.

    PubMed  Google Scholar 

  • Poritsanos, N.J. 2005. Molecular Mechanisms Involved in the Secondary Metabolite Production and Biocontrol of Pseudomonas Chlororaphis PA23. Masters Thesis, University of Manitoba, Winnipeg, MB.

    Google Scholar 

  • Pozo, M.J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology 10: 393–398.

    PubMed  CAS  Google Scholar 

  • Pozo, M.J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J.M. and Azco‘ n-Aguilar, C. 2002. Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany 53: ,525–534.

    PubMed  CAS  Google Scholar 

  • Pyke, B., Rice, M., Sabine, B. and Zalucki, M.P. 1987. The push-pull strategy – behavioural control of Heliothis. Australian Cotton Grow. May–July, pp. 7–9.

    Google Scholar 

  • Raaijmakers, J.M., Vlami, M. and de Souza, J.T. 2002. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81: 537–547.

    PubMed  CAS  Google Scholar 

  • Raaijmakers, J.M. and Weller, D.M. 2001. Exploiting genotypic diversity of 2,4-diacetyl-phloroglucinol-producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Applied and Environmental Microbiology 67: 2545–2554.

    PubMed  CAS  Google Scholar 

  • Rabindra, R.J., Rajasekaran, B. and Jayaraj, S. 1997. Combined action of nuclear polyhedrosis virus and neem bitter against Spodoptera litura (Fab) larvae. Journal of Biological Control 11: 5–9.

    Google Scholar 

  • Raghunathan, V. 2005. Ecofriendly pathway. In: The Hindu Survey of Indian Agriculture, pp. 160–164.

    Google Scholar 

  • Ragumoorthy, K.N. 1996. Bioecology, Host Plant Resistance and Management of the Moringa Fruitfly, Gitona distigma (Meign) (Diptera: D5rosophilidae). Unpublished Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore.

    Google Scholar 

  • Ramarathnam, R. 2007. Mechanisms of Phyllosphere Biological Control of Leptosphaeria Maculans, the Blackleg Pathogen of Canola, Using Antagonistic Bacteria. PhD Thesis, University of Manitoba, Winnipeg, MB.

    Google Scholar 

  • Ramarathnam R. and Fernando, W.G.D. 2006. Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Science and Technology 16: 567–582.

    Google Scholar 

  • Rao, M.S. and Reddy, P.P. 1992. Innovative approaches of utilization of biocontrol agents Paecilomyces lilacinus and Verticillium chlamydosporium against Root-knot Nematode on Tomato. In: First Afro-Asian Nematology Symposium, Aligarh Muslim University, Aligarh, pp. 25–26.

    Google Scholar 

  • Raupach, G.S. and Kloepper, J.W. 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158–1164.

    PubMed  CAS  Google Scholar 

  • Ravnskov, S., Larsen, J. and Jakobsen, I. 2002. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium Burkholderia cepacia. Soil Biology & Biochemistry 34: 1875–1881.

    CAS  Google Scholar 

  • Reid, J.B. and Goss, M.J. 1981. Effect of living roots of different plant species on aggregate stability of two arable soils. Journal of Soil Science 32: 521–541.

    Google Scholar 

  • Russell, D. 2004. Integrated pest management in less developed countries. In: Horowitz, A.R., Ishaaya, I. (eds), Insect pest management – field and protected crops. Springer, Berlin Heidelberg, New York, ,pp. 141–208.

    Google Scholar 

  • Schumann, G. (Editor) 1991. Plant Diseases: Their Biology and Social Impact. APS Press Saint Paul, ,MN.

    Google Scholar 

  • Seldin, L., Rosado, A.S., Da Cruz, D.W., Nobrega, A. and Van Elsas, J.D. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Applied & Environmental Microbiology 64: 3860–3868.

    CAS  Google Scholar 

  • Sharma, H.C. and Ortiz, R. 2000. Transgenics for pest management and environment. Current Science 79: 421–437.

    CAS  Google Scholar 

  • Shipp, L., Elliott, D., Gillespie, D. and Brodeur, J. 2007. From chemical to biological control in Canadian greenhouse crops. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, pp. 118–127.

    Google Scholar 

  • Silo-Suh, L.A., Lethbridge, B.J., Raffel, S.J., He, H., Clardy, J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology 60: 2023–2030.

    PubMed  CAS  Google Scholar 

  • Smart, L.E., Blight, M.M., Pickett, J.A. and Pye, B.J. 1994. Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L. Crop Protection 13: 127–135.

    Google Scholar 

  • Smith, S.E. and Read, D.J. 1997. Mycorrhizal symbiosis, 2nd ed., Academic Press, San Diego, CA.

    Google Scholar 

  • Steddom, K. and Menge, J. 2001. Evaluation of continuous application technology for delivery of the biocontrol agent Pseudomonas putida 06909-rif/nal. Plant Disease 85: 387–392.

    Google Scholar 

  • Stern, V.M., Smith, R.F., Van den Bosch, R. and Hagen, K.S. 1957. The integrated control concept. Hilgardia 29: 81–101.

    Google Scholar 

  • Strange, R.N. 1993. Plant Disease Control: Towards Environmentally Acceptable Methods. Chapman & Hall, New York, 366pp.

    Google Scholar 

  • Sumner, D.R., Doupnik B., Jr. and Boosalis, M.G. 1981. Effects of reduced tillage and multiple cropping on plant diseases. Annual Review of Phytopathology 19: 167–187.

    Google Scholar 

  • Swarnakumari, N. 1996. Effect of Chitin Amendments and Pseudomonas fluorescens (midula) on Rice Root Nematode, Hirschmanniella oryzae (Van Breda de Hann, 1902) Luc and Goodey, 1963 in Rice cv. ADT 38, (Oryza sativa L.). Unpublished M.Sc., (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore, India, p. 112.

    Google Scholar 

  • Thomashow, L.S., Bonsall, R.F. and Weller, D.M. 1997. Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst, C.J., Knusden, G.R., McInerney, M.J., Stetzenbach, L.D. and Walter, M.D. (eds), Manual of Environmental Microbiology. ASM Press, Wahington, DC, pp. 493–499.

    Google Scholar 

  • Tedders, W.L. and Schaeffer, P.W. 1994. Release and establishment of Harmonia axyridis (Coleoptera, Coccinellidae) in the Southeastern United States. Entomological News 105: 228–243.

    Google Scholar 

  • United States Department of Agriculture, Economic Research Service. 2001. Farm Business Economics Briefing Room. Accessed July 2001, www.ers.usda.gov/data/FarmIncome.

  • Uthamasamy, S. 1998. Economics of host plant resistance: Future dimensions. In: Ali, K.A., Rajasekaran, B. and Sathiah, N. (eds), Training on Host Plant Resistance to Insects and Mites in Crop Plants. Tamil Nadu Agricultural University, Coimbatore, pp. 274–279.

    Google Scholar 

  • Viaene, N.M. and Abawi, G.S. 1998. Management of Meloidogyne hapla on lettuce in organic soil with sudangrass as a cover crop. Plant Disease 82: 945–952.

    Google Scholar 

  • Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder formulation of Pseudomonas fluorescens to control pigeonpea wilt. Biological Control 8: 166–171.

    Google Scholar 

  • Vigo, C., Norman, J.R. and Hooker, J.E. 2000. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology 49: 509–514.

    Google Scholar 

  • Wall, G.J., Pringle, E.A. and Sheard, R.W. 1991. Intercropping red clover with silage corn for soil erosion control. Canadian Journal of Soil Sciences 71: 137–145.

    Google Scholar 

  • Weller, D.M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97: 250–256.

    PubMed  Google Scholar 

  • Wolf, P.F.J. and Verreet, J.A. 2002. An integrated pest management system in germany for the control of fungal leaf diseases in sugar beet. Plant Disease 86: 336–344.

    Google Scholar 

  • Wright, S.A.I., Zumoff, C.H., Schneider, L. and Beer, S.V. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology 67: 284–292.

    PubMed  CAS  Google Scholar 

  • Yang, C.H. and Crowley, D.E. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied & Environmental Microbiology 63: 345–351.

    Article  Google Scholar 

  • Yaninek, S. 2007. Biological control of the cassava green mite in Africa: Overcoming challenges to implementation. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (eds), Biological Control: A Global Perspective. CAB International, Oxfordshire, pp. 28–37.

    Google Scholar 

  • Zhang, Y., Fernando, W.G.D., de Kievit, T., Berry, C., Daayf, F. and Paulitz T. 2006. Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Canadian Journal of Microbiology 52: 476–481.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.G. Dilantha Fernando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fernando, W.D., Ramarathnam, R., Nakkeeran, S. (2009). Advances in Crop Protection Practices for the Environmental Sustainability of Cropping Systems. In: Peshin, R., Dhawan, A.K. (eds) Integrated Pest Management: Innovation-Development Process. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8992-3_6

Download citation

Publish with us

Policies and ethics