Development of detection systems for the sporangia of Peronospora destructor



A monoclonal antibody that recognises components of the wall of sporangia of Peronospora destructor was raised. Tests using spores of higher fungi and other species of mildew demonstrated the specificity of the monoclonal. The antibody was used to develop lateral flow devices for sporangia of P. destructor. A competitive lateral flow format was developed which could detect onion downy mildew sporangia. Five-microliter gold anti-mouse IgM solution pre-mixed with 10 μl of P. destructor monoclonal antibody (EMA 242) proved the optimal concentration for detection of sporangia of P. destructor when applied to sample pads of lateral flow devices. Limits of approximately 500 sporangia of P. destructor could be detected by the absence of a test line on the lateral flow device within test samples. Using a scanning densitometer improved the sensitivity of detection. Further development and validation of the test is required if it is to be used for risk assessments of onion downy mildew in the field.


Onion downy mildew Monoclonal antibody Peronospora destructor Lateral flow assay Detection PTA ELISA Immunofluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battilani, P., Rossi, V., Racca, P., & Giosuè, S. (1996). ONIMIL, a forecaster for primary infection of downy mildew of onion. European Mediterranean Plant Protection Organisation Bulletin, 26, 567–576.Google Scholar
  2. Berger, R. D. (1970). Forecasting Helminthosporium turcicum attacks in Florida sweetcorn. Phytopathology, 60, 1285.Google Scholar
  3. Bugiani, R., Govoni, P., & Cobelli, L. (1998). First large scale application of IPI model for potato late blight prediction in the Po valley. In H. Schepers, & E. Bouma (Eds.), Proceedings of the Workshop on the European Network for the Development of an Integrated Control Strategy of Potato Late Blight (pp. 188–199). Carlow, Ireland: PAV.Google Scholar
  4. Carisse, O., McCartney, H. A., Gagnon, J. A., & Brodeur, L. (2005). Quantification of air-borne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa. Plant Disease, 89, 726–733 doi: 10.1094/PD-89-0726.CrossRefGoogle Scholar
  5. Carisse, O., Rolland, D., Lefebvre, A., & Talbot, B. (2003). Using aerobiology data to manage onion blight caused by Botrytis squamosa. Proceedings of the 8th International Congress of Plant Pathology, 1, 5.Google Scholar
  6. Clarkson, J. P., Kennedy, R., & Phelps, K. (2000). The effect of temperature and water potential on the production of conidia of sclerotia of Botrytis squamosa. Plant Pathology, 49, 119–128 doi: 10.1046/j.1365-3059.2000.00417.x.CrossRefGoogle Scholar
  7. Cook, H. T. (1932). Studies on the downy mildew of onion and the causal organism, Peronospora destructor (Berk.) Caspary. New York agricultural experimental. Station, Ithaca, 143, 1–40.Google Scholar
  8. Cruickshank, I. A. M. (1958). Environment and sporulation of phytopathogenic fungi. IV. The effect of light on the formation of conidia of Peronospora tabacina Adam. Australian Journal of Biological Sciences, 16, 87–98.Google Scholar
  9. Day, J. P., Kell, G., & Griffiths, G. W. (2002). Differentiation of Phytophthora infestans from other air-borne biological particles by flow cytometry. Applied and Environmental Microbiology, 68, 37–45 doi: 10.1128/AEM.68.1.37-45.2002.PubMedCrossRefGoogle Scholar
  10. Dewey, F. M. (1992). Detection of plant invading fungi by monoclonal antibodies. In J. M. Duncan, & L. Torrance (Eds.), Techniques for the rapid detection of plant pathogens (pp. 47–62). Oxford: Blackwell.Google Scholar
  11. Gilles, T., Clarkson, J. P., Phelps, K., & Kennedy, R. (2004). Development of MILIONCAST, an improved model for predicting downy mildew sporulation on onions. Plant Disease, 88, 695–702 doi: 10.1094/PDIS.2004.88.7.695.CrossRefGoogle Scholar
  12. Hildebrand, P. D., & Sutton, J. C. (1982). Weather variables in relation to an epidemic of onion downy mildew. Phytopathology, 72, 219–224.CrossRefGoogle Scholar
  13. Jesperson, G. D., & Sutton, J. C. (1987). Evaluation of a forecaster for downy mildew of onion (Allium cepa L.). Crop Protection (Guildford, Surrey), 6, 95–103 doi: 10.1016/0261-2194(87)90106-2.CrossRefGoogle Scholar
  14. Kennedy, R. (1998). Bulb onions: Evaluation of fungicides for control of downy mildew (Peronospora destructor). Horticultural Development Council, Annual Report (Year 1) for project FV 189, pp. 10.Google Scholar
  15. Kennedy, R., & Wakeham, A. J. (2006). Impact of fungicide resistance on light leaf spot control in vegetable brassicas in Scotland. Aspects of Applied Biology, 78, 51–58.Google Scholar
  16. Kennedy, R., Wakeham, A. J., Byrne, K. G., Meyer, U. M., & Dewey, F. M. (2000). A new method to monitor airborne inoculum of the fungal plant pathogens Mycosphaerella brassicicola and Botrytis cinerea. Applied and Environmental Microbiology, 66, 297–307 doi: 10.1128/AEM.66.7.2996-3003.2000.CrossRefGoogle Scholar
  17. Kennedy, R., Wakeham, A. J., & Cullington, J. E. (1999). Production and immunodetection of ascospores of Mycosphaerella brassicicola: The ringspot pathogen of vegetable crucifers. Plant Pathology, 48, 297–307 doi: 10.1046/j.1365-3059.1999.00341.x.CrossRefGoogle Scholar
  18. Lane, C. R., Hobden, E., Walker, L., Barton, V. C., Inman, A. J., Hughes, K. J. D., et al. (2007). Evaluation of a rapid diagnostic field test kit for identification of Phytophthora spp. including P. ramorum and P. kernoviae at the point of inspection. Plant Pathology, 56, 828–835 doi: 10.1111/j.1365-3059.2007.01615.x.CrossRefGoogle Scholar
  19. Phillon, V. (2003). Timing of sprays against potato late blight, based on daytime average airborne spore concentration. Proceedings of the 8th International Congress of Plant Pathology, 1, 6.Google Scholar
  20. Rondomanski, W. (1967). Studies on the epidemiology of onion downy mildew, Peronospora destructor (Berk.) Fries. Technical Report for 1962–67. Research Institute for Vegetable Crops, Skierniewice, Poland, 23.Google Scholar
  21. Thornton, C. R., Groenhof, A. C., Forrest, R., & Lamotte, R. (2004). A one step immunochromatographic lateral flow device specific to Rhizoctonia solani and certain related species and its use to detect and quantify R. solani in soil. Phytopathology, 94, 280–288 doi: 10.1094/PHYTO.2004.94.3.280.PubMedCrossRefGoogle Scholar
  22. Wakeham, A. J., Kennedy, R., & McCartney, H. A. (2004). Using ELISA to monitor the collection and retention of a range of common airborne spore types in air-samples. Journal of Aerosol Science, 35, 835–850 doi: 10.1016/j.jaerosci.2004.01.005.CrossRefGoogle Scholar
  23. Williams, R. H., Ward, E., & McCartney, H. A. (2001). Methods of integrating air-sampling and DNA analysis for the detection of airborne fungal spores. Applied and Environmental Microbiology, 67, 2453–2459 doi: 10.1128/AEM.67.6.2453-2459.2001.PubMedCrossRefGoogle Scholar
  24. Yarwood, C. E. (1937). Relation of light to the diurnal periodicity of sporulation of certain downy mildews. Journal of Agricultural Research, 54, 365–373, 8.Google Scholar
  25. Yarwood, C. E. (1943). Onion downy mildew. Hilgardia, 14, 595–691.Google Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  1. 1.Warwick HRI, University of Warwick, WellesbourneWarwickUK

Personalised recommendations