Skip to main content

Use Of Biosensors To Detect And Monitor Chemicals Commonly Used In Agriculture And Terrorist Weapons With The Goal Of Preventing Dangerous Environmental Consequences

  • Conference paper
Environmental Problems of Central Asia and their Economic, Social and Security Impacts

In this chapter, based on literature review and our own data analysis, biosensors were developed based on biosensor principles. Specifically, biosensors intended for the determination of total toxicity, gene toxicity, and for detecting groups of toxic elements and individual toxins are described in detail. The following individual toxins were singled out using biosensors: mycotoxins, phenol substances, surfactants, and cyanides, as well as formaldehyde and volatile carbonyls. These sensors can be used in environmental assessments to detect and monitor chemicals commonly used agriculture management, and even terrorist weapons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L.A. Barrie, D. Gregor, B. Hargrave, R. Lake, D. Muir, R. Shearer, B. Tracey, T. Bidleman, Arctic contaminants: sources, occurrence and patways, Tot. Env., 122, 1–74 (1992).

    Article  CAS  Google Scholar 

  • E. Beschr, J.D. Mackenzie, Hybrid organic-inorganic sensors, Mater. Sci. Eng., C6, 145–154 (1998).

    Google Scholar 

  • O.V. Bevza, A.N. Shmireva, N.F. Starodub, Thermobiosensors: peculiarities of construction, functioning and perspective of practical application, Ukr. Biochem. J., 74(2), 10–20 (2002).

    CAS  Google Scholar 

  • L.S. Birnbaum, Workshop on potential exposure to dioxin-like compounds: V. immunologic aspects, Environ. Health Perspec., 103, 157–159 (1995).

    Article  CAS  Google Scholar 

  • L. Bousse, Whole cell biosensors, Sensors and Actuators, B34, 270–275 (1996).

    CAS  Google Scholar 

  • Ch.M.A. Brett, D.A. Fungaro, J.M. Morgado, M.H. Gil, Novel polymer-modified electrodes for batch injection sensors and application to environmental analysis, J. Electroanalyt. Chem., 468, 26–33 (1999).

    Article  CAS  Google Scholar 

  • A. Brouwer, D.C. Morse, M.C. Lans, A.G. Schuur, A.J. Murk, E. Klasson-Wehler, A. Bergman, T.J. Visser, Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health, Toxicol. Ind. Health, 14, 59–84 (1998).

    CAS  Google Scholar 

  • L. Campanella, G. Favero, D. Mastrofini, M. Tomassetti, Further developments in toxicity cell biosensors, Sensors and Actuators, B44, 279–285 (1997).

    CAS  Google Scholar 

  • J.C. Chuang, M.A. Pollard, Y.-L. Chou, R.G. Menton, N.K. Wilson, Evaluation of enzyme-linked immunosorbent assay for the determination of polycyclic aromatic hydrocarbons in house dust and residential soil, Science of Total Environ., 224, 189–199 (1998).

    Article  CAS  Google Scholar 

  • R.E. Clement, P.W. Yang, Environmental analysis, Anal. Chem., 69, 251R–287R (1997).

    Article  CAS  Google Scholar 

  • T. Colborn, J. Epidemiology of Great Lakes bald eagles, Tococol. Environ. Health, 33, 395–453 (1991).

    Article  CAS  Google Scholar 

  • Council Directive 82/242 EEC of March 31, 1982 on the approximation of the laws of the Member States relating to methods of testing degradability of non-ionic surfactants on amending Directive 73/404/EEC.

    Google Scholar 

  • D.C. Cowell, A.A. Dowman, T. Ashcroft, I. Caffor, The detection and identification of metal and organic pollutants in potable water using enzyme assays suitable for sensor development, Biosensors & Bioelectronics, 10, 509–516 (1995).

    Article  CAS  Google Scholar 

  • S. Daunert, G. Barrett, J.S. Feliciano, R.S. Shetty, S. Shrestha, W.S. Smith-Spenser, Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes, Chem. Rev., 100, 270–2738 (2000).

    Article  CAS  Google Scholar 

  • Y. Davidov, D.R. Rozen, D.R. Smulski, T.K. Van Dyk, A.C. Vollmer, D.A. Elsemore, R.A. LaRossa, S. Belkin, Improved bacterial SOS promoter: lux fusions for genotoxicity detection, Mutat. Res., 467, 97–107 (2000).

    Google Scholar 

  • T.A. Desai, D.J. Hansford, L. Leoni, M. Essenpreis, M. Ferrari, Nanoporous anti-fouling silicon membranes for biosensor applications, Biosensors & Bioelectronics, 15, 453–462 (2000).

    Article  CAS  Google Scholar 

  • M.T. Elnabarawy, R.R. Robideau, S.A. Beach, Comparison of three rapid toxicity test procedures: Microtox, Polytox and activated sludge respiration inhibition, Toxicity Assess, 3, 361–370 (1988).

    Article  CAS  Google Scholar 

  • P. Eriksson, Developmental neurotoxicity of environmental agents in the neonate, Neuro-toxicology, 18, 719–726 (1997).

    CAS  Google Scholar 

  • G. Eriksson, S. Jensen, H. Kylin, W. Strachan, The pine needle as a monitor of atmospheric pollution, Nature, 341, 42–44 (1989).

    Article  CAS  Google Scholar 

  • G.P. Evans, M.G. Briers, D.M. Rawson, Can Biosensors Help to Protect Drinking Water? Biosensors, 2, 287–300 (1986).

    Article  CAS  Google Scholar 

  • L.P. Experiandova, I.I. Fokina, A.B. Blank, T.I. Ivkova, B.P. Soukhomlinov, Determination of small quantities of phenol in water, Anal. Chim. Acta, 396, 317–320 (1999).

    Article  Google Scholar 

  • V.J. Feron, H.P. Til, F. de Vrijer, R.A. Woutersen, F.R. Cassee, P.J. van Bladeren, Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment, Mutat Res., 259, 363–385 (1991).

    Article  CAS  Google Scholar 

  • O.S. Gojster, N.F. Starodub, GA. Chmel'nitskij, Determination of T2 mycotoxin by chemiluminescent method with the use of Daphnia, Hydrobiol J., 5 85–91 (2003).

    Google Scholar 

  • M.V. Gonchar, Y.I. Korpan, N.F. Starodub, AA. Sibirny, Formaldehyde-induced acidification of the medium by methylotrophic yeast cells and elaboration of cell biosensor based on this phenomenon, In: Proc. of the 3rd International Conference on role of Formaldehyde in Biological Systems. Methylation and Demethylation Processes, May 1992, Sopron, Hubgary, 203–208 (1992).

    Google Scholar 

  • A. Guadano, E. de la Pena, A. Gonzalez-Coloma, J.F. Alvarez, Development of a new bioluminescent mutagenicity assay based on the Ames test, Mutagenesis, 14, 411–415 (1999).

    Article  CAS  Google Scholar 

  • EA.H. Hall, M. Preuss, J.J. Gooding, M. Hammerle, Exploring sensor to monitor some environmental discharges, In: Nikolelis D.P. et al. (Eds.) Biosensors for direct monitoring of Environmental Pollutants in Field. NATO ASI Series, 2-Environment, v.38, Kluwer, Dordreht, 227–237 (1998).

    Google Scholar 

  • ISO 6341:1996(E), Water quality — Determination of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test.

    Google Scholar 

  • S.P. Ivashkevich, S.P. Levkovetz, V.I. Nazarenko, N.F. Starodub Chemiluminescence of medium Daphnia cultivation and optimization of conditions of it determination, Ukr Biochem J., 74(3), 93–97 (2002).

    CAS  Google Scholar 

  • O.I. Kalchenko, A.V. Solovyov, SA. Cherenok, N.F. Starodub, V.I. Kalchenko, Complexion of Calix[4]arenephosphonous acids with 2,4-dichlorophenoxyacetic acid and atrazine in water, J. Inclusion Phenomena and Microcyclic Chemistry, 46, 19–25 (2003).

    Article  CAS  Google Scholar 

  • A.M. Katzev, O.S. Gojster, N.F. Starodub Influence of T2 mycotoxin on the intensity of bacterial bioluminescence, Ukr Biochem J., 75(3), 99–103 (2003).

    Google Scholar 

  • A.M. Kipopoulou, E. Manoli, C. Samara, Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area, Environ. Pollut, 106, 369–380 (1999).

    Article  CAS  Google Scholar 

  • E. Kobatake, T. Niimi, T. Haruyama, Y. Ikariyama, M. Aizawv, Biosensing of benzene derivatives in the environment by luminescent Escherichis coli, Biosensors & Bioelectronics, 10, 601–605 (1995).

    Article  CAS  Google Scholar 

  • S. Kohler, S. Belkin, R.D. Schmid, Reporter gene bioassays in environmental analysis, Fresenius J. Anal. Chem., 366, 769–779 (2000).

    Article  CAS  Google Scholar 

  • Y.I. Korpan, M.V. Gonchar, N.F. Starodub, AA. Shul'ga, A.A. Sibirny, A.V. El'skaya, A cell biosensor specific for formaldehyde based on pH-sensitive transistord oupled to methylotrophic yeaset cells with genetically adjusted metabolism, Anal. Biochem., 215, 216–222 (1993).

    Article  CAS  Google Scholar 

  • Y.I. Korpan, M.V. Gonchar, N.F. Starodub, A.A. Sibirny, A.V. El'skaya, Cells of methyllotrophic yeast as biological active material for creation of sensors: Formaldehyde analyzer based on pH-sensitive field effect transistors, Biochemistry, 59, 201–205 (1994).

    CAS  Google Scholar 

  • Y.I. Korpan, M.V. Gonchar, N.F. Starodub, G.V. El'skaya, Biosensors on the basis of cells of microorganisms, Biopolymers and cells, 11(2), 15–45 (1995).

    Google Scholar 

  • Y.I. Korpan, M.V. Gonchar, A.A. Sibirny, C. Martlet, A.V. El'skaya, T.D. Gibson, A.P. Soldatkin, Development of highly selective and stable potentiometric sensors for formaldehyde determination, Biosensors & Bioelectronics, 15, 77–87 (2000).

    Article  CAS  Google Scholar 

  • S. Lacorte, P. Viana, M. Guillamon, R. Tauler, T. Vinhas, D. Barcelo, Main findings and conclusions of the implementation of Directive 76/464/CEE concerning the monitoring of organic pollutants in surface waters (Portugal, April 1999–May2000), J. Environ. Monit., 3, 475–482 (2001).

    Article  CAS  Google Scholar 

  • J. Li, L.S. Chia, N.K. Goh, S.N. Tan, Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds, Anal. Chim. Acta, 362, 203–211 (1998).

    Article  CAS  Google Scholar 

  • J. Lu, W. Qin, Zh. Zhang et al., A flow-injection type chemiluminescence-based for cyanide, Anal. Chim. Acta, 304, 369–373 (1995).

    Article  CAS  Google Scholar 

  • R. Lucklum, S. Rosler, J. Hartmann, P. Hauptmann, On-line detection of organic pollutants in water by thickness shear mode resonators, Sensors and Actuators, B35–36, 103–111 (1996).

    Google Scholar 

  • R. Manfoud, M. Maresca, N. Garmy, J. Fantini, The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione, Toxicol. Appl. Pharmacol., 181, 209–218 (2002).

    Article  CAS  Google Scholar 

  • D. Merchant, P.J. Scully, R. Edwards, J. Grabowski, Optical fibre fluorescence and toxicity sensor, Sensors and Actuators, B48, 476–484 (1998).

    CAS  Google Scholar 

  • C.J. Mirocha, R.A. Pawlosky, K. Chatterjee et al., Analysis for Fusarium toxins in various samples implicated in biological warfare in Southeast Asia, J. Assoc. Anal. Chem., 66(6), 1485–1499 (1983).

    CAS  Google Scholar 

  • P. Mocarelli, P. Brambilla, P.M. Gerthoux, Jr.D.G. Patterson, L.L. Needham, Change in sex ration with exposure to dioxin, Lancet, 348, 409 (1996).

    Article  CAS  Google Scholar 

  • B.A. Morris, M.N. Clifford (Eds.), Immunoassays for food analysis, London/NY, Elsevier Applied Science, 1985. P.M. Morse, Soaps and Detergents, C&EN, February, 1, 35–48 (1999).

    Google Scholar 

  • G. Mulvad, H.S. Pederson, J.C. Hansen, E. Dewailly, E. Jul, M.B. Pedersen, P. Bjerregaard, G.T. Malcom, Y. Deguchi, J.P. Middaugh, Exposure of Greenlandic Inuit to organochlorines and heavy metals through the marine food-chain: an international study, Tot. Env., 186, 137–139 (1996).

    Article  CAS  Google Scholar 

  • A.V. Nabok, A. Tsargorodskaya, A. Holloway et al., Registration of T2mycotoxin with total internal reflection ellipsometry and QCM impedance methods, Biosensors and Bioelectronics, 22, 885–890 (2007).

    Article  CAS  Google Scholar 

  • A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins, Appl Surface Sci., 246, 381–386 (2005).

    Article  CAS  Google Scholar 

  • M. Naessens, C. Tran-Minh, Whole-cell biosensor for direct determination of solvent vapours, Sensors and Actuators, B59, 100–102 (1999).

    CAS  Google Scholar 

  • A. Nakae, K. Tsuji, M. Yamanaka, Determination of alkyl chain distribution of alkylbensene sulphonates by liquid chromatography, Anal. Chem., 53, 1818–1821 (1981).

    Article  CAS  Google Scholar 

  • Y. Nomura, K. Ikebukuro, K. Yokoyama, T. Takeuchi, Y. Arikawa, S. Ohno, I. Karube, A novel microbial sensor for anionic surfactant determination, Anal. Lett., 27, 3095–3108 (1994).

    Google Scholar 

  • E. Palmqvist, C.B. Kriz, M. Khayyami, M. Khayyami, B. Danielsson, P.-O. Larsson, K. Mosbach D. Kriz, Development of a simple detector for microbial metabolism, based on a polypyrrole dc resistometric device, Biosensors & Bioelectronics, 9, 551, (1994).

    Article  CAS  Google Scholar 

  • L.N. Pilipenko, A.V. Egorova, I.V. Pilipenko, N.F. Starodub, N.I. Kanjuk, S.P. Ivashkevich, Investigation of toxic effect of patulin with the help of biosensorics systems, Food Sciences and Technology, 1, 35–38 (2007).

    Google Scholar 

  • B. Polyak, E. Bassis, A. Novodvorets, S. Belkin, R.S., Marks optical fiber bioluminescent whole-cell microbial biosensor to genotoxicans, Water Sci. Technol., 42, 305–311 (2000).

    Google Scholar 

  • B. Polyak, E. Bassis, A. Novodvorets, S. Belkin, R.S. Marks, Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization, Sensors and Actuators, B74, 18–26 (2001).

    CAS  Google Scholar 

  • M.C. Ramos, M.C. Torijas, N. Diaz, Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide, Sensors and Actuators, B73, 71–75 (2001).

    CAS  Google Scholar 

  • A.V. Rebrijev, N.F. Starodub, Photopolymers as immobilization matrix in biosensors, Ukr Biochem J., 73, 5–16 (2001).

    Google Scholar 

  • A.V. Rebrijev, N.F. Starodub, A.F. Masljuk, Optimization of conditions of immobilization of enzymes in a photopolymeric membrane, Ukr Biochem J., 74, 82–87 (2002).

    Google Scholar 

  • A.N. Reshetilov, I.N. Semenchuk, P.V. Iliasov, L.A. Taranova, The amperometric biosensor for detection of sodium dodecyl sulfate, Anal. Chim. Acta, 347, 19–26 (1997).

    Article  Google Scholar 

  • K.-P. Rindt, S. Scholtissek, In: Schmid R.D., Scheller F.W. (Eds.) Biosensors: application in medicine, Environmental Protection and Process Control, GBF Monographs, v. 13, VCH, 405–415 (1989).

    Google Scholar 

  • Ch. Ritter, H. Frebel, H. Kroneis, F.J. Krysl, S. Lang, Ch. Nehold, H. Offenbacher, G. Pestitschek, B. Schaffar, M. Schinnerl, W. Schmidt, G. Steiner, Multiparameter mini-tuarised sensor arrays for multiple use, Sensors and Actuators, B76, 220–225 (2001).

    CAS  Google Scholar 

  • S.S. Rosatto, L.T. Kubota, G.O. Neto, Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilizing on silica-titanium, Anal. Chim. Acta, 390, 65–72 (1999).

    Article  CAS  Google Scholar 

  • R.T. Rosen, J.D. Rosen, Presence of four Fusarium mycotoxins and synthetic material in yellow rain. Evidence for the use of chemical weapons in Laos, Biomed Mass Spectrom 9(10), 443–450 (1982).

    Article  CAS  Google Scholar 

  • R. Rozen, Y. Davidov, R.A. LaTossa, S. Belkin, Microbial sensors of UV radiation based upon recA': lux fusions, Appl. Biochem. Biotechnol., 88, 1–10 (1999).

    Google Scholar 

  • I.M. Russell, S.G. Burton, Development and determination of an immobilized-polyphenol oxidase bioprobe for the detection of phenolic pollutants in water, Anal. Chim. Acta, 389, 161–170 (1999).

    Article  CAS  Google Scholar 

  • Y.M. Shirshov, N.F. Starodub, A.L. Kukla et al., Creation of the multi-enzymatic sensor for simultaneous determination of phosphororganic pesticides and heavy metal ions in solutions. In: Proc. of the 11th European Conference on Solid-State Transducers. Eurosensors XI, September 21–24, 1997, Warsaw, Poland, 727–730 (1997).

    Google Scholar 

  • V.M. Starodub, N.F. Starodub, Electrochemical immune sensor based on the ion-selective field effect transistor for the determination of the level of myoglobin. In: Proc. of the 13th European Conference on Solid-State Transducers, September 12–15, 1999, The Hague, The Netherlands, 185–188 (1999a).

    Google Scholar 

  • V.M. Starodub, N.F. Starodub, Optical immune sensors for the monitoring protein substances in the air. In: Proc. of the 13th European Conference on Solid-State Transducers, Eurosensor XII, September 12–15 1999, The Hague, The Netherlands, 181–184 (1999b).

    Google Scholar 

  • N.F. Starodub, V.M. Starodub, Immune sensors: origins, achievements and perspectives, Ukr Biochem J., 72, 147–163 (2000).

    CAS  Google Scholar 

  • N.F. Starodub, V.M. Starodub, Biosensors and control of pesticides in water and foods, J. Water Chem. Technol., 23(6), 612–638 (2001a).

    CAS  Google Scholar 

  • N.F. Starodub, V.M. Starodub, Biosensors and control of pesticides in water and foods, Chem. Technol. Water, 6, 612–638 (2001b).

    Google Scholar 

  • V.M. Starodub, N.F. Starodub, Electrochemical and Optical Biosensors: Origin of Development, Achievements and Perspectives of Practical Application, In: Proc. of NATO ASI “Novel Processes and Control Technologies in the Food Industry”, September 7–17, 2000. Edited by Bozoglu F. et al., v.338, IOS Press, 63–94 (2001c).

    Google Scholar 

  • N.F. Starodub, T.L. Dibrova, Y.M. Shirshov, K.V. Kostioukevich, Development of sensor based on the surface plasmon resonance for control of biospecific interaction. In: Proc. of the 11th European Conference on Solid-State Transducers. Eurosensors XI, September 21–24, 1997, Warsaw, Poland, 1429–1432 (1997).

    Google Scholar 

  • N.F. Starodub, W. Torbicz, D. Pijanowska et al., Optimization methods of enzyme integration with transducers for analysis of irreversible inhibitors. In: Proc. of the XII European Conference on Solid-State Transducers and the IX UK Conference on Sensors and their Applications, September 13–16, 1998, Southampton, UK. Edited by White, N.M. Bristol: Inst. of Physics, 1, 837–840 (1998).

    Google Scholar 

  • N.F. Starodub, M.I. Kanjuk, A.L. Kukla, Y.M. Shirshov, Multi-enzymatic electrochemical sensor: field measurements and their optimization, Anal. Chim. Acta, 385, 461–466 (1999a).

    Article  CAS  Google Scholar 

  • N.F. Starodub, V.M. Starodub., N.I. Kanjuk et al., Biological sensor array for express determination of a number of biochemical quantities. In: Proc. of 2nd EUREL Workshop “European Advanced Robotic System Development. Medical Robotics”, September 23–24, 1999, Piza, Italy, 57–64 (1999b).

    Google Scholar 

  • N.F. Starodub, B.B. Dzantiev, V.M. Starodub, A.V. Zherdev, Immunosensor for the determination of the herbicide simazine based on an ion-selective field effect transistor, Anal. Chim. Acta, 424, 37–43 (2000).

    Article  CAS  Google Scholar 

  • N.F. Starodub, A.V. Nabok, A. Tsargorodskaya et al., Control of T2 mycotoxin in solutions and foods by biosensors based on SPR and TIRE. In: Proc. of the International Conference on “Sensor+Test 2006”, Nuremberg, Germany, 87–92 (2006).

    Google Scholar 

  • L.A. Taranova, S.N. Dybkova, V.G. Grishchenkov, E.A. Mordukhova, A.M. Boronin, Surfactant degradative plasmids, Biopolymers and cell, 16, 420–424 (2000).

    CAS  Google Scholar 

  • R.V. Thomann, J.P. Connolly, T.F. Parkerton, An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction, Environ. Toxicol. Chem., 11, 615–629 (1992).

    Article  CAS  Google Scholar 

  • E. Tyihak, L. Trezl, B. Szende, In: P. Csermely (Ed.) Stress of Life. From Molecules to Man, Ann. N.Y. Acad. Sci., 851, 259–270 (1998).

    Article  CAS  Google Scholar 

  • H.W. Vallack, D.J. Bakker, I. Brandt, E. Brostrom-Lunden, A, Brouwer, K.R. Bull, C. Gough, R. Guardans, I. Holoubek, B. Jansson, R. Koch, J. Kuylenstierna, A. Lecloux, D. Mackay, P. McCutcheon, P. Mocarelli, R.D.F. Taalman, Controlling persistent organic pollutants-what next? Env. Toxicol. Pharmacol., 6, 143–175 (1998).

    Article  CAS  Google Scholar 

  • T. Vo-Dinh, B.J. Tromberg, G.D. Griffin, K.R. Ambrose, M.J. Sepaniak, E.M. Gardenhire, Antibody-based optic biosensor for the carcinogen benzo(a)pyrene, Appl. Spectrosc., 41, 735–738 (1987).

    Article  CAS  Google Scholar 

  • B. Winter, K. Cammann, Formaldehyde analysis by electrochemical biosensor, FIA Fes. Z. Anal. Chem., 334, 720 (1989).

    Google Scholar 

  • Zh-Qi. Zhang, Sh-Z. Chen, Y.-F. Li, M.-F. Zhu, Preconcentration with membrane cell and adsorptive polarographic determination of cyanides in air, Anal. Chim. Acta, 382, 283– 289 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolaj F. Starodub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Starodub, N.F. (2008). Use Of Biosensors To Detect And Monitor Chemicals Commonly Used In Agriculture And Terrorist Weapons With The Goal Of Preventing Dangerous Environmental Consequences. In: Qi, J., Evered, K.T. (eds) Environmental Problems of Central Asia and their Economic, Social and Security Impacts. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8960-2_7

Download citation

Publish with us

Policies and ethics