Biological and Chemical Complexity of Fusarium proliferatum

  • Robert H. Proctor
  • Anne E. Desjardins
  • Antonio Moretti
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 3)


In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad host range. It is a frequent component of ear rot diseases of maize and wheat, and also causes diseases of plants as diverse as asparagus, fig, onion, palm, pine, and rice. DNA-based, phylogenetic analyses have revealed a high level of genetic diversity within F. proliferatum but have provided no evidence for significant species substructure based on host or geographic origin. F. proliferatum produces a wide range of biologically active metabolites, including the mycotoxins beauvericin, fumonisins, fusaproliferin, fusaric acid, fusarins, and moniliformin. Its broad host range, ability to produce diverse biologically active metabolites, and its amenability to meiotic and molecular genetic analyses make F. proliferatum an excellent system for biological and chemical studies on fungal ecology, fungal-plant interactions, and evolution.


Fumonisin Fusarium proliferatum Gibberella intermedia 



We are grateful to Marcie L. Moore and Stephanie N. Folmar for excellent technical assistance and to Hira K. Manandhar and Gyanu Manandhar for collection of grain samples in Nepal. Partial funding was provided to RHP by the International Short-term Mobility Program, National Research Council, Italy.


  1. Abbas H, Cartwright RD, Shier WT, Abouzied MM, Bird CB, Rice LG, Ross PF et al (1998) Natural occurrence of fumonisins in rice with Fusarium sheath rot disease. Plant Dis 82:22–25CrossRefGoogle Scholar
  2. Abdalla MY, Al-Rokibah A, Moretti A, Mulè G (2000) Pathogenicity of toxigenic Fusarium proliferatum from date palm in Saudi Arabia. Plant Dis 84:321–324CrossRefGoogle Scholar
  3. Anthony S, Abeywickrama K, Dayananda R, Wijeratnam SW, Arambewela L (2004) Fungal pathogens associated with banana fruit in Sri Lanka, and their treatment with essential oils. Mycopathologia 157:91–97PubMedCrossRefGoogle Scholar
  4. Armengol J, Moretti A, Perrone G, Vicent A, Bengoechea JA, García-Jiménez J (2005) Identification, incidence and characterization of Fusarium proliferatum on ornamental palms from Spain. Eur J Plant Pathol 112:123–131CrossRefGoogle Scholar
  5. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043PubMedGoogle Scholar
  6. Conner RL, Hwang SF, Stevens RR (1996) Fusarium proliferatum: a new causal agent of black point in wheat. Can J Plant Pathol 18:419–423CrossRefGoogle Scholar
  7. Corpas-Hervias C, Melero-Vara JM, Molinero-Ruiz ML, Zurera-Muñoz C, Basallote-Ureba MJ (2006) Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Dis 90:1441–1451CrossRefGoogle Scholar
  8. Desjardins AE (2006) Fusarium mycotoxins chemistry, genetics and biology. APS Press, St. Paul, MNGoogle Scholar
  9. Desjardins AE, Busman M, Proctor RH, Stessman R (2007) Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit Contam 24:1131–1137PubMedCrossRefGoogle Scholar
  10. Desjardins AE, Manandhar G, Plattner RD, Maragos CM, Shrestha K, McCormick SP (2000a) Occurrence of Fusarium species and mycotoxins in Nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J Agric Food Chem 48:1377–1383PubMedCrossRefGoogle Scholar
  11. Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM (2000b) Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 66:1020–1025PubMedCrossRefGoogle Scholar
  12. Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1–a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant-Microbe Interact 15:1157–1164PubMedCrossRefGoogle Scholar
  13. Desjardins AE, Plattner RD (2000) Fumonisin B1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agric Food Chem 48:5773–5780PubMedCrossRefGoogle Scholar
  14. Desjardins AE, Plattner RD, Nelson DR (1997) Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice and from various geographic areas. Appl Environ Microbiol 63:1838–1842PubMedGoogle Scholar
  15. Dowd PF, Barnett CJ, Johnson ET, Beck JJ (2004) Leaf axil sampling of midwest U.S. maize for mycotoxigenic Fusarium fungi using PCR analysis. Mycopathologia 158:431–440PubMedCrossRefGoogle Scholar
  16. Dugan FM, Hellier BC, Lupien SL (2003) First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathol 52:426CrossRefGoogle Scholar
  17. Dumroese RK, James RL, Wenny DL (1998) Interactions among Streptomyces griseoviridis, Fusarium root disease, and Douglas-fir seedlings. New Forest 15:181–191CrossRefGoogle Scholar
  18. Elmer WH (1995) A single mating population of Gibberella fujikuroi (Fusarium proliferatum) predominates in asparagus fields in Connecticut, Massachusetts, and Michigan. Mycologia 87:68–71CrossRefGoogle Scholar
  19. Elmer WH, Johnson DA, Mink GI (1996) Epidemiology and management of the diseases causal to asparagus decline. Plant Dis 80:117–125CrossRefGoogle Scholar
  20. Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agent against the grape downy mildew. Phytopathology 86:1010–1017CrossRefGoogle Scholar
  21. Galván GA, Koning-Boucoiran FS, Koopman WJM, Burger-Meijer K, Gozález PH, Waalwijk C, Kik C et al (2008) Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur J Plant Pathol 121:499–512CrossRefGoogle Scholar
  22. Ganassi S, Moretti A, Stornelli C, Fratello B, Bonvincini Pagliai AM, Logrieco A, Sabatini MA (2000) Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathologia 151:131–138CrossRefGoogle Scholar
  23. Geiser DM, Abbas HK, Desjardins AE, Hackett M, Juba JH, O’Donnell KL, Royse J, Tunali B (2003) Phylogenetic and biological species boundaries around Fusarium proliferatum. Proceedings of the Mycological society of America, Pacific Grove, CAGoogle Scholar
  24. Geiser DM, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJZN, Kuldau GA et al (2004) FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479CrossRefGoogle Scholar
  25. Ghiasian SA, Rezayat SM, Kord-Bacheh P, Maghsood AH, Yazdanpanah H, Shepard GS, Van Der Westhuizen L et al (2005) Fumonisin production by Fusarium species isolated from freshly harvested corn in Iran. Mycopathologia 159:31–40PubMedCrossRefGoogle Scholar
  26. Hyun JW, Lee S-C, Kim D-H, Ko S-W, Kim K-S (2000) Fusarium fruit rot of citrus in Jeju Island. Mycobiology 28:158–162Google Scholar
  27. Jeney A, Béki E, Keszthelyi A, Leslie JF, Hornok L (2007) Cloning and characterization of Fpmtr1, an amino acid transporter gene of Fusarium proliferatum (Gibberella intermedia). J Basic Microbiol 47:16–24PubMedCrossRefGoogle Scholar
  28. Jiménez M, Huerta T, Mateo R (1997) Mycotoxin production by Fusarium species isolated from bananas. Appl Environ Microbiol 63:364–369PubMedGoogle Scholar
  29. Jurjevic Z, Wilson DM, Wilson JP, Geiser DM, Juba JH, Mubatanhema W, Widstrom NW et al (2005) Fusarium species of the Gibberella fujikuroi complex and fumonisin contamination of pearl millet and corn in Georgia, USA. Mycopathologia 159:401–406PubMedCrossRefGoogle Scholar
  30. Klittich CJR, Leslie JF, Nelson PE, Marasas WFO (1997) Fusarium thapsinum (Gibberella thapsina): a new species in section Liseola from sorghum. Mycologia 89:643–652CrossRefGoogle Scholar
  31. Kritzinger Q, Aveling TAS, Marasas WFO, Rheeder JP, Van Der Westhuizen L, Shepard GS (2003) Mycoflora and fumonisin mycotoxins associated with cowpea [Vigna unguiculata (L.) Walp] seeds. J Agric Food Chem 51:2188–2192PubMedCrossRefGoogle Scholar
  32. Kuhlman EG (1982) Varieties of Gibberella fujikuroi with anamorphs in Fusarium section Liseola. Mycologia 74:759–768CrossRefGoogle Scholar
  33. Kwon S-I, von Dohlen CD, Anderson AJ (2001) Gene sequence analysis of an opportunistic wheat pathogen, an isolate of Fusarium proliferatum. Can J Bot 79:1115–1121Google Scholar
  34. Láday M, Mulè G, Moretti A, Juhász Á, Szécsi Á, Logrieco A (2004) Mitochondrial DNA variability in Fusarium proliferatum (Gibberella intermedia). Eur J Plant Pathol 110:563–571CrossRefGoogle Scholar
  35. Leslie JF (1995) Gibberella fujikuroi: available populations and variable traits. Can J Bot 73:S282–S291CrossRefGoogle Scholar
  36. Leslie JF, Anderson LL, Bowden RL, Lee Y-W (2007) Inter- and intra-specific genetic variation in Fusarium. Int J Food Microbiol 119:25–32PubMedCrossRefGoogle Scholar
  37. Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IAGoogle Scholar
  38. Leslie JF, Zeller KA, Logrieco A, Mulè G, Moretti A, Ritieni A (2004) Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl Environ Microbiol 70:2254–2262PubMedCrossRefGoogle Scholar
  39. Logrieco A, Doko B, Moretti A, Frisullo S, Visconti A (1998) Occurrence of fumonisin B1 and B2 in Fusarium proliferatum infected asparagus plants. J Agric Food Chem 46:5201–6204CrossRefGoogle Scholar
  40. Logrieco A, Moretti A, Retieni A, Bottalico A, Corda P (1995) Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis 79:727–731CrossRefGoogle Scholar
  41. Malonek S, Bömke C, Bornberg-Bauer E, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005a) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296–1311PubMedCrossRefGoogle Scholar
  42. Malonek S, Rojas MC, Hedden P, Gaskin P, Hopkins P, Tudzynski B (2005b) Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D). Appl Environ Microbiol 71:1462–1472PubMedCrossRefGoogle Scholar
  43. Malonek S, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005c) Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl Environ Microbiol 71:6014–6025PubMedCrossRefGoogle Scholar
  44. Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109(2):239–243PubMedCrossRefGoogle Scholar
  45. Marasas WFO, Nelson PE, Toussoun TA (1984) Toxigenic Fusarium species: identity and mycotoxicology. The Pennsylvania State University Press, University Park, PAGoogle Scholar
  46. Marasas WFO, Riley RT, Hendricks K, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA et al (2004) Fumonisins disrupt shingolipid metabolism, folate transport and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutri 134:711–716Google Scholar
  47. Marasas WFO, Thiel PG, Rabie CJ (1986) Moniliformin production in Fusarium section Liseola. Mycologia 78:242–247CrossRefGoogle Scholar
  48. Marín S, Magan N, Serra J, Ramos AJ, Canela R, Sanchis V (1999) Fumoinisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J Food Sci 64:921–924CrossRefGoogle Scholar
  49. Marín S, Ramos AJ, Vásquez C, Sanchis V (2006) Contamination of pine nuts by fumonisin produced by strains of Fusarium prolieratum isolated from Pinus pinea. Lett Appl Microbiol 44:68–72CrossRefGoogle Scholar
  50. Miller JD, Savard ME, Schaafsma AW, Seifert KA, Reid LM (1995) Mycotoxin production by Fusarium moniliforme and Fusarium proliferatum from Ontario and occurrence of fumonisins in the 1993 corn crop. Can J Plant Pathol 17:233–239Google Scholar
  51. Moretti A, Ferracane R, Ritieni A, Frisullo S, Lops A, Logrieco A (2000) Fusarium species from fig in Apulia: biological and toxicological characterization. Mitt Biol Bundesanst Land-Forstwirtsch Berlin-Dahlem 377:31–32Google Scholar
  52. Moretti A, Logrieco A, Bottalico A, Ritieni A, Fogliano V, Randazzo G (1997) Diversity in beauvericin and fusaproliferin production by different populations of Gibberella fujikuroi (Fusarium section Liseola). Sydowia 48:44–56Google Scholar
  53. Moretti A, Logrieco A, Bottalico A, Ritieni A, Randazzo G (1994) Production of beauvericin by Fusarium proliferatum from maize in Italy. Mycotoxin Res 10:73–78CrossRefGoogle Scholar
  54. Moretti A, Mulè G, Perrone G, Bottalico A, D’erchia AM, Logrieco A (1999) Fusarium proliferatum from various plants: fertility, toxigenicity and characterization by RAPDs. Bull Inst Compr Agr Sci Kinki Univ 7:27–36Google Scholar
  55. Mulè G, Susca A, Stea G, Moretti A (2004) A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol 110:495–502CrossRefGoogle Scholar
  56. Munkvold G, Stahr HM, Logrieco A, Moretti A, Ritieni A (1998) Occurrence of fusaproliferin and beauvericin in Fusarium-contaminated livestock feed in Iowa. Appl Environ Microbiol 64:3923–3926PubMedGoogle Scholar
  57. Naef A, Défago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116:129–143CrossRefGoogle Scholar
  58. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park, PAGoogle Scholar
  59. Nirenberg HI (1976) Untersuchugen über die morphologische and biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt Biol Bundesanst Land-Forstwirtsch Berlin-Dahlem 169:1–117Google Scholar
  60. Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458CrossRefGoogle Scholar
  61. O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78CrossRefGoogle Scholar
  62. O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248PubMedCrossRefGoogle Scholar
  63. Ocamb CM, Juzwik J, Martin FB (2002) Fusarium spp. and Pinus strobus seedlings: root disease pathogens and taxa associated with seed. New Forest 24:67–79CrossRefGoogle Scholar
  64. Pascale M, Visconti A, Pronczuk M, Wisniewska H, Chelkowski J (2002) Accumulation of fumonisins, beauvericin and fusaproliferin in maize hybrids inoculated under field conditions with Fusarium proliferatum. Mycol Res 106:1026–1030CrossRefGoogle Scholar
  65. Plattner RD, Nelson PE (1994) Production of beauvericin by a strain of Fusarium proiferatum isolated from corn fodder for swine. Appl Environ Microbiol 60:3894–3896PubMedGoogle Scholar
  66. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249PubMedCrossRefGoogle Scholar
  67. Proctor RH, Busman M, Seo J-A, Lee Y-W, Plattner RD (2008) A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol 45:1016–1026PubMedCrossRefGoogle Scholar
  68. Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822PubMedCrossRefGoogle Scholar
  69. Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105PubMedCrossRefGoogle Scholar
  70. Rim S-O, Lee J-H, Choi W-Y, Hwang S-K, Suh S-J, Lee I-J, Rhee I-K et al (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814Google Scholar
  71. Ritieni A, Fogliano V, Randazzo G, Scarallo A, Logrieco A, Moretti A, Mannina L et al (1995) Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Nat Toxins 3:17–20PubMedCrossRefGoogle Scholar
  72. Samuels GJ, Nirenberg HI, Seifert KA (2001). In: Summerell B, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Perithecial species of Fusarium. Fusarium: Paul E. Nelson Memorial Symposium. APS Press, St. Paul, MN, pp 1–14Google Scholar
  73. Seefelder A, Gossman M, Humpf H-U (2002) Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2778–2781PubMedCrossRefGoogle Scholar
  74. Sheldon JL (1904) A corn mold (Fusarium moniliforme n. sp.). Agric Exp Sta Nebr Annu Rep 17:32Google Scholar
  75. Srobarova A, Moretti A, Ferracane R, Ritieni A, Logrieco A (2002) Toxigenic Fusarium species of Liseola section in pre-harvest maize ear rot, and associated mycotoxins in Slovakia. Eur J Plant Pathol 108:299–306CrossRefGoogle Scholar
  76. Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol 118:165–172CrossRefGoogle Scholar
  77. Suarez L, Hendricks KA, Cooper SP, Sweeny AM, Hardy RJ, Larsen RD (2000) Neural tube defects among Mexican Americans living on the US-Mexico border: effects of folic acid and dietary folate. Amer J Epidemiol 152:1017–1023CrossRefGoogle Scholar
  78. Tesso T, Claflin LE, Tuinstra MR (2004) Estimation of combining ability for resistance to Fusarium stalk rot in grain Sorghum. Crop Sci 44:1195–1199CrossRefGoogle Scholar
  79. Thiel PG, Marasas WFO, Sydenham EW, Shepard GS, Gelderblom WCA, Nieuwenhuis JJ (1991) Survey of fumonisin production by Fusarium species. Appl Environ Microbiol 57:1089–1093PubMedGoogle Scholar
  80. Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45:1393–1403PubMedCrossRefGoogle Scholar
  81. Waalwijk C, van der Lee T, de Vries I, Hesselink T, Arts J, Kema GHJ (2004) Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol 110:533–544CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Robert H. Proctor
    • 1
  • Anne E. Desjardins
    • 1
  • Antonio Moretti
    • 2
  1. 1.US Department of AgricultureNational Center for Agricultural Utilization Research, Agriculture Research ServicePeoriaUSA
  2. 2.National Research CouncilInstitute of Sciences of Food ProductionBariItaly

Personalised recommendations