Skip to main content

Mechanisms of Induced Resistance Against B. cinerea

  • Chapter
  • First Online:
Postharvest Pathology

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 2))

Abstract

Botrytis cinerea is a widespread pre-and postharvest pathogen of diverse crops. Current crop protection methods rely on fungicide application and on horticultural practices. Variation for genetic resistance is documented in many crop plant species but has not been utilized. Studies in model and crop plant species are revealing the biological processes that underlie plant responses to infection to B. cinerea. The genetic control of pathogen recognition and activation of defense to restrict pathogen ingress and colonization is likely to emerge from such studies. Deeper understanding of resistance mechanisms and their genetic control will aid produce cultivars with genetic resistance to B. cinerea. The genetic components of induced resistance in different plant species and future implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006b) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28-44

    Article  CAS  PubMed  Google Scholar 

  • Abuqamar S, Chai MF, Luo H, Song F, Mengiste T (2008) Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20:1964-1983

    Article  CAS  PubMed  Google Scholar 

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007a) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665-1681

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992-2997

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in arabidopsis. Plant Cell 16:3460-3479

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491-501

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of Ethylene-Response-Factor 1 in Arabidopsisconfers resistance to several necrotrophic fungi. Plant J 29:23-32

    Article  CAS  PubMed  Google Scholar 

  • Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petetot JM, Metraux JP, Nawrath C (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158-2168

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure G, Gfeller A, Proebsting WM, Hortensteiner S, Chetelat A, Martinoia E, Farmer EE (2007b) A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889-898

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell AL (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci USA 105:859-864

    Article  CAS  PubMed  Google Scholar 

  • Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A (2006) Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol Ecol 40 I:143-149

    Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972-980

    Article  CAS  PubMed  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81-92

    Article  CAS  PubMed  Google Scholar 

  • Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P (2005) An Arabidopsis homeodomain transcription factor, Overexpressor of Cationic Peroxidase 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 17:2123-2137

    Article  CAS  PubMed  Google Scholar 

  • Coley-Smith JR, Verhoeff K, Jarvis WR (1980) The biology of Botrytis. Academic, London

    Google Scholar 

  • Colmenares AJ, Aleu J, Duran-Patron R, Collado IG, Hernandez-Galan R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997-1005

    Article  CAS  PubMed  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279-286

    Article  Google Scholar 

  • Diaz J, ten Have A, van Kan JA (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341-1351

    Article  CAS  PubMed  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957-6962

    Article  CAS  PubMed  Google Scholar 

  • Elad Y (1997) Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol Rev Camb Philos Soc 72:381-422

    Article  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis: biology, pathology and control. Kluwer Academic, Dordrecht

    Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813-820

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509-520

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003a) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193-205

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003b) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93-106

    Article  CAS  PubMed  Google Scholar 

  • Flors V, Ton J, Jakab G, Mauch-Mani B (2005) Abscisic acid and callose: team players in defense against pathogens? J Phytopathol 153:377-383

    Article  CAS  Google Scholar 

  • Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, Garcia-Agustin P, Bennett AB, Gonzalez-Bosch C (2007) Absence of the endo-beta-1, 4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J 52:1027-1040

    Article  CAS  PubMed  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756

    Article  CAS  PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751-757

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 48:267-276

    Article  CAS  PubMed  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 387:535-636

    Google Scholar 

  • Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19: 890-903

    Google Scholar 

  • Hoffman R, Roebroeck E, and Heale JB (1988) Effects of ethylene biosynthesis in carrot root slices on 6-methoxymellein accumulation and resitance to Botrytis cinerea. Physiologia Plantarum 73:71-76

    Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935-950

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Faoro F (2004) Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric Food Chem 52:4406-4413

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323-329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448-9453

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660-667

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux JP, Yephremov A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321-339

    Article  CAS  PubMed  Google Scholar 

  • Legard DE, Xiao CL, Merteley JC, Chandler CK (2000) Effects of plant spacing and cultivar on the incidence of Botrytis fruit rot in annual strawberry. Plant Dis 84:531-538

    Article  Google Scholar 

  • Leon T, Joyce D (2000) Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar. Pest Manag Sci 56:989-992

    Article  Google Scholar 

  • Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130:494-503

    Article  CAS  PubMed  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646-1661

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of Coronatine-Insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126-143

    Article  CAS  PubMed  Google Scholar 

  • Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971-986

    Article  CAS  PubMed  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104:14861-14866

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) Jasmonate-Insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938-1950

    Article  CAS  PubMed  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371-382

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409-414

    Article  CAS  PubMed  Google Scholar 

  • McCormick S (1991) Transformation of tomato with Agrobacterium tumefaciens. Plant Tiss Cult Man B.6:1-9

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron JM, Dietrich RA (2003) The BOS1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551-2565

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404

    Article  CAS  PubMed  Google Scholar 

  • Nickstadt A, Thomma B, Feussner I, Kangasjärvi J, Zeier J, Loeffler C, Scheel D, Berger S (2004) The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol Plant Pathol 5:425-434

    Article  CAS  PubMed  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430-438

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science (New York) NY 274:1914-1917

    Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237

    Article  CAS  PubMed  Google Scholar 

  • Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB. Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13 (9): 942-50

    Google Scholar 

  • Prins TW, Tudzynski P, Tiedemann AV, Tudzynski B, ten Have A, Hansen ME, Tenberge K, van Kan JAL (2000a) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad JW (ed) Fungal pathology. Netherlands, Kluwer Academic, pp 33-64

    Google Scholar 

  • Prins TW, Tudzynski P, Von Tiedemann AV, Tudzynski B, ten Have A, Hansen ME, Tenberge K, van Kan JAL (2000b) Infection strategies of Botrytis cinerea and related necrotrophic pathogenes. In: Kronstad JW (ed) Fungal pathology. Netherlands, Kluwer Academic, pp 33-64

    Google Scholar 

  • Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105:5638-5643

    Article  CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809-1819

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369-377

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant response. Proc Natl Acad Sci USA 98:4788-4793

    Article  CAS  PubMed  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619-4626

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235-270

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837-12842

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 47:75-84

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Simonich MT, Innes RW (2007) Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 144:1093-1103

    Article  CAS  PubMed  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107-15111

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093-1102

    Article  CAS  PubMed  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier P, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentumMill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265-278

    Article  CAS  Google Scholar 

  • Tierens KF, Thomma BP, Bari RP, Garmier M, Eggermont K, Brouwer M, Penninckx IA, Broekaert WF, Cammue BP (2002) Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant J 29:131-140

    Article  CAS  PubMed  Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala A, Metraux JP, Van Loon LC, Pieterse CM (2002) Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11-21

    Article  CAS  PubMed  Google Scholar 

  • van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247-253

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453-483

    Article  PubMed  Google Scholar 

  • van Loon L, Geraats B, Linthorst H (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184-191

    Article  PubMed  Google Scholar 

  • van Wees S, Chang H-S, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132:606-617

    Article  PubMed  Google Scholar 

  • Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T (2004a) The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant J 40:558-574

    Article  CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006a) The membrane-anchored Botrytis-Induced Kinase1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257-273

    Article  CAS  PubMed  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res 99:1303-1310

    Article  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561-580

    Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251-285

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592-605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesfaye Mengiste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mengiste, T., Laluk, K., AbuQamar, S. (2009). Mechanisms of Induced Resistance Against B. cinerea . In: Prusky, D., Gullino, M. (eds) Postharvest Pathology. Plant Pathology in the 21st Century, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8930-5_2

Download citation

Publish with us

Policies and ethics