Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics

  • Stewart Shapiro
Part of the Synthese Library book series (SYLI, volume 341)


Category Theory Relative Consistency Proof Theory Completeness Theorem Foundational Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awodey, S. [2004], “An answer to Hellman’s question: Does category theory provide a framework for mathematical structuralism?”, Philosophia Mathematica (3) 12, 54–64.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benacerraf, P. [1965], “What numbers could not be”, Philosophical Review 74, 47–73; reprinted in [4].CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernays, P. [1967], “Hilbert, David” in The encyclopedia of philosophy, Volume 3, edited by P. Edwards, New York, Macmillan publishing company and The Free Press, 496–504.Google Scholar
  4. 4.
    Benacerraf, P., and H. Putnam [1983], Philosophy of mathematics, second edition, Cambridge, Cambridge University Press.zbMATHGoogle Scholar
  5. 5.
    Blanchette, P. [1996], “Frege and Hilbert on consistency”, Journal of Philosophy 93, 317–336.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Coffa, A. [1986], “From Geometry to tolerance: sources of conventionalism in nineteenth-century geometry” in From quarks to quasars: Philosophical problems of modern physics, University of Pittsburgh Series, Volume 7, Pittsburgh, Pittsburgh University Press, 3–70.Google Scholar
  7. 7.
    Frege, G. [1884], Die Grundlagen der Arithmetik, Breslau, Koebner; The foundations of arithmetic, translated by J. Austin, second edition, New York, Harper, 1960.Google Scholar
  8. 8.
    Frege, G. [1971], On the foundations of geometry and formal theories of arithmetic, translated by Eikee-Henner W. Kluge, New Haven, Connecticut, Yale University Press.Google Scholar
  9. 9.
    Frege, G. [1976], Wissenschaftlicher Briefwechsel, edited by G. Gabriel, H. Hermes, F. Kambartel, and C. Thiel, Hamburg, Felix Meiner.Google Scholar
  10. 10.
    Frege, G. [1980], Philosophical and mathematical correspondence, Oxford, Basil Blackwell.zbMATHGoogle Scholar
  11. 11.
    Hale, B. [1987], Abstract objects, Oxford, Basil Blackwell.Google Scholar
  12. 12.
    Hellman, G. [1989], Mathematics without numbers, Oxford, Oxford University Press.zbMATHGoogle Scholar
  13. 13.
    Hellman, G. [1996], “Structuralism without structures”, Philosophia Mathematica (III) 4, 100–123.zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hellman, G. [2003], “Does category theory provide a framework for mathematical structuralism?”, Philosophia Mathematica (3) 11, 129–157.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hilbert, D. [1899], Grundlagen der Geometrie, Leipzig, Teubner; Foundations of geometry, translated by E. Townsend, La Salle, Illinois, Open Court, 1959.Google Scholar
  16. 16.
    Hilbert, D. [1925], “Über das Unendliche”, Mathematische Annalen 95, 161–190; translated as “On the infinite”, [25], 369–392 and [4], 183–201.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hilbert, D. [1935], Gesammelte Abhandlungen, Dritter Band, Berlin, Julius Springer.Google Scholar
  18. 18.
    Husserl, E. [1900], Logische Untersuchen 1, Halle a.d. S., M. Niemeyer, translated as Logical Investigations, by J. N. Findlay, Amherst, New York, Humanity Books, 2000.Google Scholar
  19. 19.
    McLarty, C. [1993], “Numbers can be just what they have to”, Nous 27, 487–498.MathSciNetGoogle Scholar
  20. 20.
    McLarty, C. [2004], “Exploring categorical structuralism”, Philosophia Mathematica (3) 12, 37–53.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Resnik, M. [1997], Mathematics as a science of patterns, Oxford, Oxford University Press.zbMATHGoogle Scholar
  22. 22.
    Shapiro, S. [1991], Foundations without foundationalism: A case for second-order logic, Oxford, Oxford University Press.zbMATHGoogle Scholar
  23. 23.
    Shapiro, S. [1996], “Space, number, and structure: A tale of two debates”, Philosophia Mathematica (3) 4 (1996), 148–173.zbMATHMathSciNetGoogle Scholar
  24. 24.
    Shapiro, S. [1997], Philosophy of mathematics: structure and ontology, New York, Oxford University Press.zbMATHGoogle Scholar
  25. 25.
    Van Heijenoort, J. [1967], From Frege to Gödel, Cambridge, Massachusetts, Harvard University Press.zbMATHGoogle Scholar
  26. 26.
    Wilson, M. [1993], “There’s a hole and a bucket, dear Leibniz”, Midwest Studies in Philosophy 18, 202–241.CrossRefGoogle Scholar
  27. 27.
    Wright, C. [1983], Frege’s conception of numbers as objects, Aberdeen, Aberdeen University Press.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stewart Shapiro
    • 1
    • 2
  1. 1.The Ohio State UniversityUSA
  2. 2.University of St. AndrewsScotland

Personalised recommendations