100 Years of Zermelo’s Axiom of Choice: What was the Problem with It?

  • Per Martin-Löf
Part of the Synthese Library book series (SYLI, volume 341)


Equivalence Relation Choice Function Type Theory Propositional Function Extensional Axiom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Cantor, Über unendliche lineare Punktmannigfaltigkeiten. Nr. 5, Math. Annalen, Vol. 21, 1883, pp. 545-591. Reprinted in Gesammelte Abhandlungen, Edited by E. Zermelo, Springer-Verlag, Berlin, 1932, pp. 165–208.Google Scholar
  2. 2.
    G. H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence, Springer-Verlag, New York, 1982, p. 51.zbMATHGoogle Scholar
  3. 3.
    E. Zermelo, Beweis, daβ jede Menge wohlgeordnet werden kann. (Aus einem an Herrn Hilbert gerichteten Briefe.), Math. Annalen, Vol. 59, 1904, pp. 514–516.Google Scholar
  4. 4.
    E. Zermelo, Neuer Beweis für die Mäglichkeit einer Wohlordnung, Math. Annalen, Vol. 65, 1908, pp. 107–128.zbMATHCrossRefGoogle Scholar
  5. 5.
    E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre. I, Math. Annalen, Vol. 65, 1908, pp. 261–281.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc., Vol. 41, 1935, pp. 667–670.CrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Baire, É. Borel, J. Hadamard and H. Lebesgue, Cinq lettres sur la théorie des ensembles, Bull. Soc. Math. France, Vol. 33, 1905, pp. 261–273.zbMATHMathSciNetGoogle Scholar
  8. 8.
    É. Borel, Quelques remarques sur les principes de la théorie des ensembles, Math. Annalen, Vol. 60, 1905, pp. 194–195.Google Scholar
  9. 9.
    L. E. J. Brouwer, Over de grondslagen der wiskunde, Maas & van Suchtelen, Amsterdam, 1907. English translation in Collected Works, Vol. 1, Edited by A. Heyting, North-Holland, Amsterdam, 1975, pp. 11–101.zbMATHGoogle Scholar
  10. 10.
    E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967, p. 9.zbMATHGoogle Scholar
  11. 11.
    R. Diaconescu, Axiom of choice and complementation, Proc. Amer. Math. Soc., Vol. 51, 1975, pp. 176–178.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. N. Whitehead, On cardinal numbers, Amer. J. Math., Vol. 24, 1902, pp. 367–394.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    B. Russell, On some difficulties in the theory of transfinite numbers and order types, Proc. London Math. Soc., Ser. 2, Vol. 4, 1906, pp. 29–53.CrossRefGoogle Scholar
  14. 14.
    P. Aczel, The type theoretic interpretation of constructive set theory, Logic Colloquium ’77, Edited by A. Macintyre, L. Pacholski and J. Paris, North-Holland, Amsterdam, 1978, pp. 55–66.Google Scholar
  15. 15.
    P. Aczel, The type theoretic interpretation of constructive set theory: choice principles, The L. E. J. Brouwer Centenary Symposium, Edited by A. S. Troelstra and D. van Dalen, North-Holland, Amsterdam, 1982, pp. 1–40.Google Scholar
  16. 16.
    M. Hofmann, Extensional Constructs in Intensional Type Theory, Springer-Verlag, London, 1997.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Per Martin-Löf
    • 1
  1. 1.Department of MathematicsUniversity of StockholmSweden

Personalised recommendations