Introduction: The Three Foundational Programmes

  • Sten Lindström
  • Erik Palmgren
Part of the Synthese Library book series (SYLI, volume 341)

Keywords

Topo Defend Univer Sten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benacerraf, P., Putnam, H., Philosophy of Mathematics: Selected Readings (2nd ed.). Cambridge: Cambridge University Press, 1983.MATHGoogle Scholar
  2. 2.
    Bishop, E., Foundations of Constructive Analysis. New York: Mac-Graw Hill, 1967.MATHGoogle Scholar
  3. 3.
    Boolos, G., ‘The Consistency of Frege’s Foundations of Arithmetic’, in J.J. Thompson (ed.), Being and Saying: Essays for Richard Cartwright. Cambridge: MIT Press, 1987. Reprinted in Boolos G., Logic, Logic, and Logic. Cambridge: Harvard University Press, 1998.Google Scholar
  4. 4.
    Boolos, G., Logic, Logic, and Logic. Cambridge: Harvard University Press, 1998.MATHGoogle Scholar
  5. 5.
    Bridges, D., Richman, F., Varieties of Constructive Mathematics. London Mathematical Society Lecture Note Series, vol. 97. Cambridge: Cambridge University Press, 1987.Google Scholar
  6. 6.
    Brouwer, L.E.J., ‘De onbetrouwbaardheid der logische principes’, Tijdschrift voor wijsbegeerte 2, 152–158, 1908.Google Scholar
  7. 7.
    Brouwer, L.E.J., Collected Works 1–2. Heyting (ed.), North-Holland, 1975–76.Google Scholar
  8. 8.
    Burgess, J., Fixing Frege. Princeton: Princeton University Press, 2005.MATHGoogle Scholar
  9. 9.
    Cantor, G., ‘Letter to Dedekind’, in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 113–117, 1967.Google Scholar
  10. 10.
    Coquand, T., Huet, G., ‘The calculus of constructions’, Information and Computation 76, 95–120, 1988.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Curry, H.B., Feys, R., Combinatory Logic. Amsterdam, Netherlands: North-Holland, 1958.MATHGoogle Scholar
  12. 12.
    Dedekind, R., Was sind und was sollen die Zahlen? Vieweg, Braunschweig, 1888. English translation ‘The Nature and Meaning of Numbers’, in R. Dedekind, (ed.), Essays on the Theory of Numbers, New York: Dover, 29–115, 1963.Google Scholar
  13. 13.
    Dedekind, R., ‘Letter to Keferstein’, in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 98–103, 1967.Google Scholar
  14. 14.
    Demopoulos, W. (ed.), Frege’s Philosophy of Mathematics. Cambridge: Harvard University Press, 1997.Google Scholar
  15. 15.
    Dummett, M., ‘The Philosophical Basis of Intuitionistic Logic’, in H.E. Rose and J. Shepherdson (eds.), Logic Colloquium ’73. Amsterdam: North-Holland, 1975.Google Scholar
  16. 16.
    Dummett, M., Elements of Intuitionism. Oxford: Oxford University Press, 1977.MATHGoogle Scholar
  17. 17.
    Fine, K., The Limits of Abstraction. Oxford: Oxford University Press, 2002.MATHGoogle Scholar
  18. 18.
    Frege, G., Begriffsschrift: Eine der aritmetischen nachgebildeten Formelsprache des reinen Denkens. Halle: Louis Nebert, 1879. Translated in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 1967.Google Scholar
  19. 19.
    Frege, G., Die Grundlagen der Arithmetik: Eine logischmathematische Untersuchung über den Begriff der Zahl. Breslau: Wilhelm Koebner, 1884. Trans. J. L. Austin. Foundations of Arithmetic. Oxford: Blackwell, 1950.Google Scholar
  20. 20.
    Frege, G., Die Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, 2 vols. Jena: Pohle, 1893/1903. Reprinted 1962. Hildesheim: Olms.Google Scholar
  21. 21.
    Frege, G., Philosophical and Mathematical Correspondence, Oxford: Blackwell, 1980.MATHGoogle Scholar
  22. 22.
    Gentzen, G., ‘Die Widerspruchfreihet der Zahlentheorie’, Mathematische Annalen 112, 493–565, 1936.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Goldfarb, W., ‘Frege’s Conception of Logic’, in Floyd and Shieh (eds.), Future Pasts: The Analytic Tradition in Twentieth-Century Philosophy. Oxford: Oxford University Press, 25–41, 2001.Google Scholar
  24. 24.
    Gödel, K., ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatshefte für Mathematik und Physik 38, 173–199, 1931. Translated in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 1967.Google Scholar
  25. 25.
    Gödel, K., ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’, Dialectica 12, 280–287, 1958.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hale, B., Wright, C., The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics. Oxford: Clarendon Press, 2001.MATHGoogle Scholar
  27. 27.
    Heck, R., Jr., ‘The development of arithmetic in Frege’s Grundgesetze der arithmetic’, Journal of Symbolic Logic 58, 579–601, 1993. Reprinted in Demopoulos, W. (ed.), Frege’s Philosophy of Mathematics. Cambridge: Harvard University Press, 1997.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Heck, R., Jr., ‘The Julius Caesar Objection’, in R. Heck (ed.), Language, Thought, and Logic: Essays in Honour of Michael Dummett, Oxford: Oxford University Press, 1997.Google Scholar
  29. 29.
    van Heijenoort, J., (ed.) From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 1967.MATHGoogle Scholar
  30. 30.
    Henkin, L., ‘Completeness in the theory of types’, Journal of Symbolic Logic 15, 81–91, 1950.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hesseling, D.E., Gnomes in the Fog: The Reception of Brouwer’s Intuitionism in the 1920s. Basel: Birkhäuser, 2003.MATHGoogle Scholar
  32. 32.
    Heyting, A., ‘Die Formale Regeln der intuitionistischen Logik’, Sitzungsberichte der Preussische Akademie von Wissenschaften. Physikalischmathematische Klasse, 42–56, 1930.Google Scholar
  33. 33.
    Hilbert, D., Grundlagen der Geometrie. Berlin: Teubner Verlag, 1899.Google Scholar
  34. 34.
    van der Hoeven, G., Moerdijk, I., ‘On choice sequences determined by spreads’, Journal of Symbolic Logic, 49, 908–916, 1984.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Howard, W., The Formulae-as-Types Notion of Construction’, in J.P. Seldin and J.R. Hindley (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. London: Academic Press, 1980.Google Scholar
  36. 36.
    Kleene, S.C., ‘On the interpretation of intuitionistic number theory’, Journal of Symbolic Logic 10, 109–124, 1945.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Kolmogorov, A.N., ‘On the principle of excluded middle’ (Russian). Mat. Sb. 32, 646–667, 1925. Translated in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 414–437, 1967.Google Scholar
  38. 38.
    Lambek, J., Scott, P.J., Introduction to Higher Order Categorical Logic. Cambridge: Cambridge University Press, 1986.MATHGoogle Scholar
  39. 39.
    Lawvere, F.W., ‘An elementary theory of the category of sets’, Proceedings of the National Academy of Sciences, USA 52, 869–872, 1964.Google Scholar
  40. 40.
    Linsky, B., Russell’s Metaphysical Logic, CSLI Publications, Stanford: Center for the Study of Language and information, 1999.Google Scholar
  41. 41.
    Mancosu, P., From Brouwer to Hilbert—The Debate on the Foundations of Mathematics in the 1920s. New York and Oxford: Oxford University Press, 1998.MATHGoogle Scholar
  42. 42.
    Martin-Löf, P., Notes on Constructive Mathematics. Stockholm: Almqvist och Wiksell, 1970.Google Scholar
  43. 43.
    Martin-Löf, P., ‘An intuitionistic theory of types’, Report, Department of Mathematics, Stockholm University 1972. Reprinted in G. Sambin and J. Smith (eds.), Twenty-Five Years of Constructive Type Theory, Oxford: Oxford University Press, 1998.Google Scholar
  44. 44.
    Martin-Löf, P., ‘An intuitionistic theory of types: predicative part’, in H.E. Rose and J. Shepherdson (eds.) Logic Colloquium ’73. Amsterdam: North-Holland, 73–118, 1975.Google Scholar
  45. 45.
    Parsons, C., ‘Frege’s Theory of Number’, in Max Black (ed.), Philosophy in America. Ithaca: Cornell University Press, 180–203, 1965. Reprinted in Demopoulos, W. (ed.), Frege’s Philosophy of Mathematics. Cambridge: Harvard University Press, 1997.Google Scholar
  46. 46.
    Peano, G., Arithmetices Principia, nova methodo exposita. Bocca, Torino, 1889. English translation in van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931. Cambridge, MA: Harvard University Press, 83–97, 1967.Google Scholar
  47. 47.
    Reck, E., ‘Dedekind’s structuralism: an interpretation and partial defense’, Synthese 137, 369–419, 2003.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Shapiro, S., Foundations without Foundationalism: A Case for Second-Order Logic. Oxford: Oxford University Press, 1991.MATHGoogle Scholar
  49. 49.
    Sieg, W., ‘Hilbert’s programs: 1917–1922’, Bulletin of Symbolic Logic, 5(1), 1–44, 1999.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Sieg, W., ‘Beyond Hilbert’s Reach’, in D.B. Malament (ed.), Reading Natural Philosophy–Essays in the History and Philosophy of Science and Mathematics. Chicago & La Salle, Illinois: Open Court Press, 363–405, 2002. Reprinted in the present volume.Google Scholar
  51. 51.
    Sieg, W., Schlimm, D., ‘Dedekind’s analysis of number: systems and axioms’, Synthese 147(1), 121–170, 2005.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Tennant, N., Anti-Realism and Logic: Truth as Eternal. Oxford: Oxford University Press, 1987.Google Scholar
  53. 53.
    Troelstra, A.S., Choice Sequences. Oxford: Oxford University Press 1977.MATHGoogle Scholar
  54. 54.
    Troelstra, A.S., van Dalen, D., Constructivism in Mathematics, vol. I and II. Amsterdam: North-Holland, 1988.Google Scholar
  55. 55.
    Whitehead, A.N., Russell, B., Principia Mathematica, 3 vols, Cambridge: Cambridge University Press, 1910, 1912, 1913. Second edition, 1925 (Vol. 1), 1927 (Vols. 2, 3). Abridged as Principia Mathematica to *56, Cambridge: Cambridge University Press, 1962.Google Scholar
  56. 56.
    Wright, C., Frege’s Conception of Numbers as Objects. Aberdeen: Scots Philosophical Monographs, 1983.MATHGoogle Scholar
  57. 57.
    Zach, R., ‘Hilbert’s Program’, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Fall 2003 Edition, URL = <http://plato.stanford.edu-/archives/fall2003/entries/ hilbert-program/>Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sten Lindström
    • 1
  • Erik Palmgren
  1. 1.Department of Historical Philosophical and Religious StudiesUmeå UniversityUmeåSweden

Personalised recommendations