Pollen, Allergies and Adaptation

  • Mikhail Sofiev
  • Jean Bousquet
  • Tapio Linkosalo
  • Hanna Ranta
  • Auli Rantio-Lehtimaki
  • Pilvi Siljamo
  • Erkka Valovirta
  • Athanasios Damialis
Part of the Biometeorology book series (BIOMET, volume 1)

This chapter is dedicated to the problem of plant-induced human allergy and to a specific way of adaptation to it via short-to-mid-term forecasts of atmospheric pollen concentrations and following pre-emptive and preparatory measures. It starts from the introduction to the subject, then considers the main forms of human plant-related allergy. Then, basics of pollination ecology are introduced and the mechanisms and possible models for pollination are presented. Apart from the standard local-scale effect of pollination, the chapter considers the long-distance transport of pollen and outlines the methodology for its quantitative evaluation and forecasting. The final section is dedicated to possible adaptation measures in changing climate.


Allergic Rhinitis Pollen Concentration Allergy Clin Immunol Pollen Season Grass Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts R, Cornelissen JHC, Dorrepaal E, van Logtestijn RSP, Callaghan TV (2004) Effects of experimentally imposed climate scenarios on flowering phenology and flower production of subarctic bog species. Glob Change Biol 10:1599–1609.Google Scholar
  2. Adams-Groom B, Emberlin J, Corden J, Millington W, Mullins J (2002) Predicting the start of the birch pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia 18:117–123.Google Scholar
  3. Al-Dowaisan A, Fakim N, Khan MR, Arifhodzic N, Panicker R, Hanoon A (2004) Salsola pollen as a predominant cause of respiratory allergies in Kuwait. Ann Allergy Asthma Immunol Feb; 92(2):262–267.Google Scholar
  4. Allaby M (2002) Encyclopedia of Weather and Climate. New York: Facts On File.Google Scholar
  5. Anto JM, Sunyer J (1997) Thunderstorms: a risk factor for asthma attacks [editorial; comment]. Thorax 52(8):669–670.Google Scholar
  6. Ault A (2004) Report blames global warming for rising asthma. Lancet 363:1532.Google Scholar
  7. Baldo BA, Panzani RC, Bass D, Zerboni R (1992) Olive (Olea europea) and privet (Ligustrum vulgare) pollen allergens. Identification and cross-reactivity with grass pollen proteins. Mol Immunol 29(10):1209–1218.Google Scholar
  8. Batanero E, Villalba M, Ledesma A, Puente XS, Rodriguez R (1996) Ole e 3, an olive-tree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241(3):772–778.Google Scholar
  9. Bauchau V, Durham S (2001) Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J 24:758–764.Google Scholar
  10. Bauman A (1996) Asthma associated with thunderstorms [editorial; comment]. Bmj. 312(7031):590–591.Google Scholar
  11. Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513.Google Scholar
  12. Bellomo R, Gigliotti P, Treloar A, Holmes P, Suphioglu C, Singh MB et al. (1992) Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne. The possible role of rye grass pollen. Med J Aust 156(12):834–837.Google Scholar
  13. Blázquez MA, Ahn JH and Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171.Google Scholar
  14. Bortenschlager S, Bortenschlager I (2005) Altering airborne pollen concentrations due to the Global Warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana 44:172–180.Google Scholar
  15. Bousquet J, van Cauwenberge O, Khaltaev N (2001) Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 108:S147–334.Google Scholar
  16. Bousquet J, Bieber T, Fokkens W (2006) Themes in allergy. Editorial. Allergy 61:1–2.Google Scholar
  17. Bousquet J, Guerin B, Hewitt B, Lim S, Michel FB (1985) Allergy in the Mediterranean area. III: Cross reactivity among Oleaceae pollens. Clin Allergy 15(5):439–448.Google Scholar
  18. Bousquet J, Hewitt B, Guerin B, Dhivert H, Michel FB (1986) Allergy in the Mediterranean area. II: Cross-allergenicity among Urticaceae pollens (Parietaria and Urtica). Clin Allergy 16(1):57–64.Google Scholar
  19. Bucholtz GA, Lockey RF, Serbousek D (1985) Bald cypress tree (Taxodium distichum) pollen, an allergen. Ann Allergy 55(6):805–810.Google Scholar
  20. Campbell ID, McDonald K, Flannigan MD, Kringayark J (1999) Long-distance transport of pollen into the Arctic. Nature 399:29–30.Google Scholar
  21. Carter TR, Jylhä K, Perrels A, Fronzek S, Kankaanpää S (2005) FINADAPT scenarios for the 21st century: alternative futures for considering adaptation to climate change in Finland.FINADAPT Working Paper 2, Finnish Environment Institute Mimeographs 332, Helsinki,42 pp.Google Scholar
  22. Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Ann Rev Ecol Syst 13:229–259.Google Scholar
  23. Charpin D, Calleja M, Lahoz C, Pichot C, Waisel Y (2005) Allergy to cypress pollen. Allergy Mar; 60(3):293–301.Google Scholar
  24. Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for three phenology modelling. Plant Cell Environ 22:1–13Google Scholar
  25. Clot B (2001) Airborne birch pollen in Neuchâtel (Switzerland): onset, peak and daily patterns. Aerobiologia 17:25–29.Google Scholar
  26. Clot B (2003) Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia 19:227–234.Google Scholar
  27. Corbi AL, Cortes C, Bousquet J, Basomba A, Cistero A, Garcia-Selles J et al. (1985) Allergenic cross-reactivity among pollens of Urticaceae. Int Arch Allergy Appl Immunol 77(4):377–383.Google Scholar
  28. Corden J, Millington W (1999) A study ofQuercus pollen in the Derby area, UK. Aerobiologia 15:29–37.Google Scholar
  29. Corden JM, Stach A, Milligton W (2002) A comparison ofBetula pollen season at two European sites; Derby, United Kingdom and Poznan, Poland (1995–1999). Aerobiologia 18:54–53.Google Scholar
  30. Coville FV (1920) The influence of cold in stimulating the growth of plants. J Agric Res 20:151–160.Google Scholar
  31. Dahl Å, Strandhede S-O, Wihl J-Å (1999) Ragweed — An allergy risk in Sweden? Aerobiologia 15:293–297.Google Scholar
  32. D'Amato G, Spieksma FT, Liccardi G, Jager S, Russo M, Kontou-Fili K et al. (1998) Pollen-related allergy in Europe. Allergy 53(6):567–578.Google Scholar
  33. Damialis A, Gioulekas D, Lazopoulou C, Balafoutis C, Vokou D (2005) Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence. Int J Biometeorol 49:139–145. DOI: 10.1007/s00484-004-0229-z.Google Scholar
  34. Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmosph Environ 41:7011–7021. DOI: 10.1016/j.atmosenv.2007.05.009.Google Scholar
  35. Davies JM, Bright ML, Rolland JM, O'Hehir RE (2005) Bahia grass pollen specific IgE is common in seasonal rhinitis patients but has limited cross-reactivity with Ryegrass. Allergy Feb;60(2):251–255.Google Scholar
  36. Dell B, Hopkins AJM, Lamont BB (1986) Introduction, in: Lieth, H. and Mooney, H.A. (Eds.),Tasks for Vegetation Science, vol. 16, Junk Publishers, Dordrecht/Boston, MA/Lancaster,pp. 1–4.Google Scholar
  37. Deen W, Hunt T, Swanton CJ (1998) Influence of temperature, photoperiod, and irradiance and the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46:555–560.Google Scholar
  38. EC Survey(1996) Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS).Eur Respir J 9(4):687–695.Google Scholar
  39. Ekebom A, Nilsson S, Saar M, van Hage-Hamsten, M (1997) A comparative study of airborne pollen concentrations of three allergenic types in Tartu (Estonia), Roma/Gotland/Stockholm (Sweden) 1990–1996. Grana 36:366–372.Google Scholar
  40. Edmonds RL (1979)Aerobiology. The Ecological Systems Approach. Dowden, Hutchinson ' Ross, Stroudsburg, Pennsylvania.Google Scholar
  41. ElGhazaly G, Takahashi Y, Nilsson S, Grafstrom E, Berggren B (1995) Orbicules in Betula pen-dula and their possible role in allergy. Grana 34:300–304.Google Scholar
  42. Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier birch pollen seasons in the UK: A biotic response to changes in weather conditions?Grana 36:29–33.Google Scholar
  43. Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M (1999) Regional variations in grass pollen seasons in the UK. Long term trends and forecast models. Clin Exp Allergy 29:347–357.Google Scholar
  44. Emberlin J, Detandt M, Gehrig R, Jäger S, Nolard N, Rantio-Lehtimäki A (2002) Responses in the start ofBetula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170.Google Scholar
  45. Erdtman G. 1937. Pollen grains recorded from the atmosphere over the Atlantic. Meddel Göteb Bot Trädg 12:186–196.Google Scholar
  46. Eriksson NE, Wihl JA, Arrendal H, Strandhede SO (1984) Tree pollen allergy. II. Sensitization to various tree pollen allergens in Sweden. A multi-centre study. Allergy 39(8):610–617.Google Scholar
  47. Fang R, Xie S, Wei F (2001) Pollen survey and clinical research in Yunnan, China. Aerobiologia 17:165–169.Google Scholar
  48. Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5(1):33–45.Google Scholar
  49. Fernandez C, Martin-Esteban M, Fiandor A, Pascual C, Lopez Serrano C, Martinez Alzamora F et al. (1993) Analysis of cross-reactivity between sunflower pollen and other pollens of the Compositae family. J Allergy Clin Immunol 92(5):660–667.Google Scholar
  50. Ferreira JFS, Simon JE, Janick J (1995) Developmental studies of Artemisia annua: flowering and artemisin production under greenhouse and field conditions. Planta Medica 61:167–170.Google Scholar
  51. Flood RG, Halloran GM (1982) Flowering behaviour of four annual grass species in relation to temperature and photoperiod. Ann Bot 49:469–475.Google Scholar
  52. Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana 37:172–179.Google Scholar
  53. Frei T, Leuschner RM (2000) A change from grass pollen induced allergy to tree pollen induced allergy: 30 years of pollen observation in Switzerland. Aerobiologia 16:407–416.Google Scholar
  54. Freidhoff LR, Ehrlich-Kautzky E, Grant JH, Meyers DA, Marsh DG (1986) A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data. J Allergy Clin Immunol 78(6):1190–1201.Google Scholar
  55. Frenguelli G, Tedeschini E, Veronesi F, Bricchi E (2002) Airborne pine (Pinus spp.) pollen in the atmosphere of Perugia (Central Italy): Behaviour of pollination in the two last decades. Aerobiologia 18:223–228.Google Scholar
  56. Galán C, Garcia-Mozo H, Vazquez L, Ruiz L, Diaz de la Guardia C, Trigo MM (2005) Heat requirement for the onset of theOlea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188.Google Scholar
  57. Ganbo T, Hisamatsu K, Inoue H, Kitta Y, Nakajima M, Goto R et al. (1995) Detection of specific IgE antibodies to Japanese cypress pollen in patients with nasal allergy: a comparative study with Japanese cedar. Auris Nasus Larynx 22(3):158–164.Google Scholar
  58. Gielen B, Ceulemans M (2001) The likely impact of rising atmospheric CO2 on natural and managedPopulus: a literature review. Environ Pollut 115:335–358.Google Scholar
  59. Global strategy for asthma management and prevention,, 2002
  60. Green BJ, Dettmann M, Yli-Panula E, Rutherford S, Simpson R (2004) Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994–1999. Int J Biometeorol 48:172–178.Google Scholar
  61. Guardia R, Belmonte J (2004) Phenology and pollen production ofParietaria judaica L. in Catalonia (NE Spain). Grana 43:57–64.Google Scholar
  62. Guerin B, Kanny G, Terrasse G, Guyot JL, Moneret-Vautrin DA (1996) Allergic rhinitis to thuja pollen. Int Arch Allergy Immunol 110(1):91–94.Google Scholar
  63. Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712.Google Scholar
  64. Hänninen H, Slaney M, Linder S (2006, submitted) Dormancy release of Norway spruce under climatic warming: Testing ecophysiological models of bud burst with a whole-tree chamber experiment.Google Scholar
  65. Hall SA (1994) Modern pollen influx in tallgrass and shortgrass prairies, southern Great Plains, USA. Grana 33:321–326.Google Scholar
  66. Halwgay MH (1994) Airborne pollen of Kuwait city, Kuwait, 1975–1987. Grana 33:333–339.Google Scholar
  67. Hannerz, M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J Forest Res — Revue Canadienne de Recherche Forestiere 29(1):9–19.Google Scholar
  68. Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an eco-physiological approach to modelling of bud burst phenology. Can J Bot 73(2):183–199.Google Scholar
  69. Hay RKM (1990) Tansley Review No. 26. The influence of photoperiod on the dry-matter production of grasses and cereals. New Phytol 116:233–254.Google Scholar
  70. Heide OM (1993a) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plantarum 88:187–191.Google Scholar
  71. Heide OM (1993b) Daylength and thermal responses of bud burst during dormancy release in some northern deciduous trees. Physiol Plantarum 88:531–540.Google Scholar
  72. Hiller KM, Esch RE, Klapper DG (1997) Mapping of an allergenically important determinant of grass group I allergens. J Allergy Clin Immunol 100(3):335–340.Google Scholar
  73. Hirschwehr R, Valenta R, Ebner C, Ferreira F, Sperr WR, Valent P et al. (1992) Identification of common allergenic structures in hazel pollen and hazelnuts: a possible explanation for sensitivity to hazelnuts in patients allergic to tree pollen. J Allergy Clin Immunol 90(6 Pt 1): 927–936.Google Scholar
  74. Hirschwehr R, Heppner C, Spitzauer S, Sperr WR, Valent P, Berger U et al. (1998) Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol 101(2 Pt 1):196–206.Google Scholar
  75. Hjelmroos M (1992) Long-distance transport ofBetula pollen grains and allergic symptoms. Aerobiologia 8:231–236.Google Scholar
  76. Høgda KA, Karlsen SR, Solheim I, Tømmervik H, Ramfjord H (2002) The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Proceedings of IGARSS . Toronto, Canada, ISBN 0-7803-7536-X.Google Scholar
  77. Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604.Google Scholar
  78. Hurtado I, Alson J (1990) Air pollen dispersal in tropical area. Aerobiologia 6:122–127.Google Scholar
  79. Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G, Pini C et al. (1998) Juniperus oxycedrus: a new allergenic pollen from the Cupressaceae family. J Allergy Clin Immunol 101(6 Pt 1):755–761.Google Scholar
  80. Inoue S, Kawashima S, Takahashi Y (2002) Estimating the beginning of Japanese cedar pollen release under global climate change. Glob Change Biol 8:1165–1168.Google Scholar
  81. Ipsen H, Lowenstein H (1997) Basic features of crossreactivity in tree and grass pollen allergy. Clin Rev Allergy Immunol 15(4):389–396.Google Scholar
  82. ISAAC (1998) Worldwide variation in prevalence of symptoms of asthma, allergic rhinocon-junctivitis, and atopic eczema. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee,Lancet 351(9111):1225–1232.Google Scholar
  83. IPCC (2007) Intergovernmental Panel on Climate Change Forth Assessment Report. IPCC, Geneva, 2007. Available online from
  84. Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26.Google Scholar
  85. Jäger S, Nilsson S, Berggren B, Pessi AM, Helander M, Ramfjord H (1996) Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. A comparison between Stockholm, Trondheim, Turku and Vienna. Grana 35:171–178.Google Scholar
  86. Kailidis DS (1991)Pollution of Natural Environment. K. Hristodoulidis, Thessaloniki, Greece. [in Greek]Google Scholar
  87. Kellomäki S, Rouvinen I, Peltola H, Strandman H, Steinbrecher R (2001) Impact of global warming on the tree species composition of boreal forests in Finland and effects of emissions of isoprenoids. Glob Change Biol 7:531–544.Google Scholar
  88. Keynan N, Waisel Y, Shomerilan A, Goren A, Brener S (1991) Annual variations of airborne pollen in the coastal plain of Israel. Grana 30:477–480.Google Scholar
  89. Kikuzawa K (1989) Ecology and evolution of phenological pattern, leaf longevity and leaf habit. Evol Trend Plant 3(2):105–110.Google Scholar
  90. Knox RB (1993) Grass pollen, thunderstorms and asthma. Clin Exp Allergy 23(5):354–359.Google Scholar
  91. Koenig WD, Knops JMH (2000) Patterns of annual seed production by northern hemisphere trees: A global perspective. Am Nat 155:59–69.Google Scholar
  92. Kramer K (1994) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17:367–377.Google Scholar
  93. Laaidi K (2001) Predicting days of high allergenic risk during Betula pollination using weather types. Int J Biometeorol 45:124–132.Google Scholar
  94. Latalowa M, Mietus M, Uruska A (2002) Seasonal variations in the atmosphericBetula pollen count in Gdañsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia 18: 33–43.Google Scholar
  95. Leiferman KM, Gleich GJ, Jones RT (1976) The cross-reactivity of IgE antibodies with pollen allergens. II. Analyses of various species of ragweed and other fall weed pollens. J Allergy Clin Immunol 58(1 PT. 2):140–148.Google Scholar
  96. Leinonen I (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scandinavian J Forest Res 11(2):122–128.Google Scholar
  97. Leuschner RM, Christen H, Jordan P, Vonthein R (2000) 30 years of studies of grass pollen in Basel (Switzerland). Aerobiologia 16:381–391.Google Scholar
  98. Lewis WH, Imber WE (1975) Allergy epidemiology in the St. Louis, Missouri, area. III. Trees. Ann Allergy 35(2):113–119.Google Scholar
  99. Linkosalo T (1999) Regularities and patterns in the spring phenology of some boreal trees. Silva Fennica 33(4):237–245.Google Scholar
  100. Linkosalo T (2000) Mutual dependency and patterns of spring phenology of boreal trees. Can J Forest Res 30(5):667–673.Google Scholar
  101. Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. Under climatic warming: a comparison of two models. Tree Physiol 20(17):1175–1182.Google Scholar
  102. Linkosalo T, Lechowicz MJ (2006). Twilight far-red treatment advances leaf bud-burst of silver birch (Betula pendula). Tree Physiol (in print).Google Scholar
  103. Lorenzo C, Marco M, Paola DM, Alfonso C, Marzia O, Simone O (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol 96(1):86–91.Google Scholar
  104. Lovborg U, Baker P, Tovey E (1998) A species-specific monoclonal antibody to Cynodon dacty-lon. Int Arch Allergy Immunol 117(4):220–223.Google Scholar
  105. Mabbelrey DJ (1987)The Plant Book, Cambridge University Press, Cambridge.Google Scholar
  106. Mahoney KJ, Kegode GO (2004) Biennial wormwood (Artemisia biennis) biomass allocation and seed production. Weed Sci 52:246–254.Google Scholar
  107. Majd A, Chehregani A, Moin M, Gholami M, Kohno S, Nabe T, Shariatzade MA (2004) The Effects of Air Pollution on Structures, Proteins and Allergenicity of Pollen Grains. Aerobiologia 20:111–118.Google Scholar
  108. Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborneAmbrosia (Asteraceae) pollen in Hungary. Grana 44:57–64.Google Scholar
  109. Manninen T, Stenberg P, Rautiainen M, Voipio P, Smolander H (2006) Leaf Area Index estimation of Boreal Forest using ENVISAT ASAR. IEEE Trans Geosci Remote Sensing (in press).Google Scholar
  110. Mari A, Wallner M, Ferreira F (2003) Fagales pollen sensitization in a birch-free area: a respiratory cohort survey using Fagales pollen extracts and birch recombinant allergens (rBet v 1, rBet v 2, rBet v 4). Clin Exp Allergy Oct;33(10):1419–1428.Google Scholar
  111. Masaka K, Maguchi S (2001) Modelling the masting behaviour ofBetula platyphylla var japonica using the resource budget model. Ann Bot 88:1049–1055.Google Scholar
  112. Matikainen E, Rantio-Lehtimäki A (1998) Semiquantitative and qualitative analysis of pre-seasonal airborne birch pollen allergens in different particle sizes — Background information for allergen reports. Grana 37(5):293–297.Google Scholar
  113. Matthiesen F, Schumacher MJ, Lowenstein H (1991) Characterization of the major allergen of Cynodon dactylon (Bermuda grass) pollen, Cyn d I. J Allergy Clin Immunol 88(5):763–774.Google Scholar
  114. McMenamin P (1994) Costs of hay fever in the United States in 1990. Ann Allergy 73:35–39.Google Scholar
  115. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81.Google Scholar
  116. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659.Google Scholar
  117. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslabska O, Briede A, Chmielewski F-M, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatchak K, Mage F, Mestre A, Nordli Ø, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976.Google Scholar
  118. Mølgaard P, Christensen K (1997) Response to experimental warming in a population ofPapaver radicatum in Greenland. Glob Change Biol 3:116–124.Google Scholar
  119. Mothes N, Westritschnig K, Valenta R (2004) Tree pollen allergens. Clin Allergy Immunol 18:165–184.Google Scholar
  120. Motta AC, Marliere M, Peltre G, Sterenberg PA, Lacroix G (2006) Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol 139:294–298.Google Scholar
  121. Mourad W, Mecheri S, Peltre G, David B, Hebert J (1988) Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies. J Immunol 141(10):3486–3491.Google Scholar
  122. Murray MG, Sonaglioni MI, Villamil CB (2002) Annual variation of airborne pollen in the city of Bahia Blanca. Argentina 41:183–189.Google Scholar
  123. Myking T, Heide OM (1995) Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and Betula pubescens. Tree physiol 15(11):697–704.Google Scholar
  124. Newnham RM (1999) Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia 15:87–94.Google Scholar
  125. Orlandi F, Ruga L, Romano B, Fornaciari M (2005) Olive flowering as an indicator of local climatic changes. Theor Appl Climatol 81:169–176.Google Scholar
  126. Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710.Google Scholar
  127. Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816.Google Scholar
  128. Partanen J, Leinonen I, Repo T (2001) Effect of accumulated duration of the light period on bud burst in Norway spruce (Picea abies) of varying ages. Silva Fenn 35(1):111–117.Google Scholar
  129. Partanen J, Hänninen H, Häkkinen R (2005) Bud burst in Norway spruce (Picea abies): preliminary evidence for age-specific rest patterns. Trees-Struct Funct 19:66–72.Google Scholar
  130. Pham NH, Baldo BA (1995) Allergenic relationship between taxonomically diverse pollens. Clin Exp Allergy 25(7):599–606.Google Scholar
  131. Pham NH, Baldo BA, Bass DJ (1994) Cypress pollen allergy. Identification of allergens and cross-reactivity between divergent species. Clin Exp Allergy 24(6):558–565.Google Scholar
  132. Phillips JW, Bucholtz GA, Fernandez-Caldas E, Bukantz SC, Lockey RF (1989) Bahia grass pollen, a significant aeroallergen: evidence for the lack of clinical cross-reactivity with timothy grass pollen [see comments]. Ann Allergy 63(6 Pt 1):503–507.Google Scholar
  133. Peternel R, Srnec L, Hrga I, Hercog P, Culig J (2005) Airborne pollen ofBetula, Corylus andAlnus in Zagreb, Croatia. A three-year record. Grana 44:187–191.Google Scholar
  134. Ramirez DA (1984) The natural history of mountain cedar pollinosis. J Allergy Clin Immunol 73(1 Pt 1):88–93.Google Scholar
  135. Ranta H, Oksanen A, Hokkanen T, Bondestam K, Heino S (2005) Masting byBetula-species; applying the resource budget model to north European data sets. Int J Biometeorol 49:146–151.Google Scholar
  136. Rantio-Lehtimäki A (1994) Short, medium and long range transported airborne particles in viability and antigenicity analyses. Aerobiologia 10:175–181.Google Scholar
  137. Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265.Google Scholar
  138. Réaumur M (1735) Observations du thermometre, faites è Paris pendant l'annèe MDCCXXXV. Mem Acad Roy Sci Paris 737–754.Google Scholar
  139. Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monographs 62(3):365–392.Google Scholar
  140. Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Comm Inst For Fenn 76(3):1–110.Google Scholar
  141. Sarvas R (1974) Investigations on the annual cycle of development of forest trees II. Autumn dormancy and winter dormancy. Comm Inst For Fenn 84:1–101.Google Scholar
  142. Savitsky VD, Kobzar VN (1996) Aerobiology in Russia and neighbouring countries, 1980–1993.A bibliographic review. Grana 35:314–318.Google Scholar
  143. Seinfeld JH, Pandis SN (2006)Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Second edition. Wiley, New York, 1203 pp.Google Scholar
  144. Sharp WM, Chisham HH (1961) Flowering and fruiting in white oaks. I staminate flowering throughout pollen dispersal. Ecology 42:365–372.Google Scholar
  145. Scheiner O, Aberer W, Ebner C, Ferreira F, Hoffmann-Sommergruber K, Hsieh LS et al. (1997b) Cross-reacting allergens in tree pollen and pollen-related food allergy: implications for diagnosis of specific IgE. Int Arch Allergy Immunol 113(1–3):105–108.Google Scholar
  146. Sheldon JM, Hewson EW (1960)Atmospheric Pollution by Aeroallergens. University of Michigan Research Institute Progress Report 4. University of Michigan, Ann Arbor, MI, 191 p.Google Scholar
  147. Siljamo P., Sofiev M., Ranta H. (2004) An approach to simulation of long-range atmospheric transport of natural allergens: an example of birch pollen. In Air Pollution Modelling and its Applications XVII (eds. C. Borrego, A.-L. Norman), Springer (2007), ISBN-10: 0-387-28255-6, pp. 331–340.Google Scholar
  148. Singer B, Ziska LH, Frenz DA, Gebhard DE, Straka JG (2005) Increasing Amb a 1 content in common ragweed (Abmrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol 32:667–670.Google Scholar
  149. Solomon WR. (2001) Ragweed pollinosis: answers awaiting explanations. Ann Allergy Asthma Immunol Feb; 86(2):141–142.Google Scholar
  150. Solomon WR (2002) Airborne pollen: A brief life. J Allergy Clin Immunol 109:895–900.Google Scholar
  151. Solomon WR, Burge HA, Muilenberg ML (1983) Allergen carriage by atmospheric aerosol.I. Ragweed pollen determinants in smaller micronic fractions. J Allergy Clin Immunol 72(5 Pt 1):443–447.Google Scholar
  152. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimäki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402.Google Scholar
  153. Spieksma FThM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae,Urtica, andArtemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184.Google Scholar
  154. Stenström A, Jónsdóttir IS (1997) Responses of the clonal sedge,Carex bigelowii, to two seasons of simulated climate change. Glob Change Biol 3:89–96.Google Scholar
  155. Stinson KA, Bazzaz FA (2006) CO2 enrichment reduces reproductive dominance in competing stands of Ambrosia artemisiifolia (common ragweed). Oecologia 147:155–163.Google Scholar
  156. Suphioglu C, Singh MB, Taylor P, Bellomo R, Holmes P, Puy R et al. (1992) Mechanism of grass-pollen-induced asthma. Lancet. 339(8793):569–572.Google Scholar
  157. Tedeschini E, Rodríguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The influence in climate changes inPlatanus spp. Pollination in Spain and Italy. Grana 45:222–229.Google Scholar
  158. Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, Dobson AP,Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P, Wolfe AH (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246.Google Scholar
  159. Tuomi J, Niemelä P, Mannila R (1982) Resource allocation on dwarf shoots of birch (Betula pendula): reproduction and leaf growth. New Phytol 91:483–487.Google Scholar
  160. Varela S, Subiza J, Subiza JL, Rodriguez R, Garcia B, Jerez M et al. (1997) Platanus pollen as an important cause of pollinosis. J Allergy Clin Immunol 100(6 Pt 1):748–754.Google Scholar
  161. Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ et al. (1997) Thunderstorm-related asthma — the epidemic of 24/25 June 1994. Clin Exp Allergy 27(7):725–736.Google Scholar
  162. Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442.Google Scholar
  163. Voltolini S, Minale P, Troise C, Bignardi D, Modena P, Arobba D, Negrini AC (2000) Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy. Aerobiologia 16:245–249.Google Scholar
  164. Walther G-R (2003) Plants in warmer world. Perspect Plant Ecol Evol Syst 6:169–185.Google Scholar
  165. Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002) Response of an allergenic species,Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot 89:1843–1846.Google Scholar
  166. Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 88:279–282.Google Scholar
  167. WHO (2003)Phenology and Human Health: Allergic Disorders. Copenhagen, WHO regional office for Europe, 55 p.Google Scholar
  168. Williams R (2005) Climate change blamed for rise in hay fever. Nature 434:1059. www:// Google Scholar
  169. Yanovsky MJ, Kay SA (2003) Living by the calendar: How plants know when to flower. Nature Rev Mol Cell Biol 4:265–275.Google Scholar
  170. Zanotti AL, Puppi G (2000) Phenological surveys of allergenic species in the neighbourhood of Bologna (Italy). Aerobiologia 16:190–206.Google Scholar
  171. Ziska LH, Bunce JA, Goins (2004) Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139:454–458.Google Scholar
  172. Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG (2003) Cities as harbingers of climate change: Common ragweed, urbanization, and public health. J Allergy Clin Immunol 111:290–295.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Mikhail Sofiev
    • 1
  • Jean Bousquet
    • 2
  • Tapio Linkosalo
    • 3
  • Hanna Ranta
    • 4
  • Auli Rantio-Lehtimaki
    • 4
  • Pilvi Siljamo
    • 5
  • Erkka Valovirta
    • 6
  • Athanasios Damialis
    • 7
  1. 1.Finnish Meteorological InstituteFinland
  2. 2.Hôpital Arnaud de VilleneuveFrance
  3. 3.University of HelsinkiFinland
  4. 4.University of TurkuFinland
  5. 5.Finnish Meteorological InstituteFinland
  6. 6.Turku Allergy CentreFinland
  7. 7.Aristotle UniversityGreece

Personalised recommendations