Hinged Frameworks with Unusual Geometrical Properties

  • Mikhail Kovalev
Conference paper

Abstract

Examples of bar and joint frameworks in the plane having unusual geometrical properties are presented. The first of them is a linkage with the varying number of degrees of freedom, depending on its position. The second is a geometrically stable hinged truss with all hinges lying on a straight line. The third one is an exotically unstable truss. Some questions concerning geometry of hinged trusses are stated.

Keywords

Linkages Degrees of freedom Hinged trusses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kovalev M.D., Geometric Theory of Hinged Devices. In Russian Acad. Sci. Izv. Math. 44(1), 1995, pp. 43–67.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Kovalev M.D., To Geometrical Aspects of Hinged Devices and Configurations. Vestnik MGTU. Mashinostroenie 4(45), 2001, pp. 33–51 (RussianGoogle Scholar
  3. 3.
    Wohlhart K., Kinematotropic Linkages. Recent Advances in Robot Kinematics. Kluwer Academic Publishers, 1996, pp. 359–368.Google Scholar
  4. 4.
    Wunderlich W., Ein merkwürdiges Zwölfstabgetriebe. Österreichisches Ingenierurarchiv. Band 8, Heft 2/3, 1954, pp. 224–228.MATHMathSciNetGoogle Scholar
  5. 5.
    Kovalev M.D., Stability of Hinged Frameworks and Hinged Schemes. Results of Science and Engineering. Series of Modern Mathematics and Applications. V. 68. Works of the International Conference Devoted to 90 Anniversary of L.S. Pontryagin v. 7. Geometry and Topology. Moscow, VINITI, 1999, pp. 65–86 (RussianGoogle Scholar
  6. 6.
    Bezdek K., Connelly R., Pushing Disks Apart – the Kneser – Poulsen Conjecture in the Plane, J. Reine Angew. Math. 553, 2002, pp. 221–236.MATHMathSciNetGoogle Scholar
  7. 7.
    Kovalev M.D., Straightened Hinged Frameworks Sbornik. Mathematics 195(6), 2004, pp. 833–858.MATHMathSciNetGoogle Scholar
  8. 8.
    Asimow L., Roth B., The Rigidity of Graphs. Trans. Amer. Math. Soc., 245, 1978, pp. 279–289.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Connelly R., Handbook of Convex Geometry. Vol. A, B, North-Holland, Amsterdam, 1993, pp. 223–271.Google Scholar
  10. 10.
    Kovalev M.D, Results and Problems of Geometry of Hinged Devices. The Report on 12 World Congress IFTOMM, Besancon, France, June 18–21, 2007 (RussianGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mikhail Kovalev
    • 1
  1. 1.Bauman Moscow State UniversityRussia

Personalised recommendations