Skip to main content

Dynamics of Heel Strike in Bipedal Systems with Circular Feet

  • Conference paper
Proceedings of EUCOMES 08

Abstract

Energetic efficiency is a fundamental subject of research in bipedal robot locomotion. In such systems, the collision of the foot with the ground at heel strike is the main cause of energy loss during the gait. In this work, a Lagrangian framework to study the impulsive dynamics of collisions is presented. Based on the inert constraints of this event, a decomposition of the dynamics to the spaces of constrained and admissible motions is introduced. It is used to analyze the energy redistribution at heel strike in circular-feet bipeds. We present results that show the effect of the foot radius and the impact configuration on the energetic cost of walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schiehlen W., Energy-optimal design of walking machines, Multibody Systems Dynamics, Vol. 13, 2005, pp. 129–141.

    Article  MATH  MathSciNet  Google Scholar 

  2. McGeer T., Passive dynamic walking, Int. J. Robotics Research, Vol. 9(2), 1990, pp. 62–82.

    Article  Google Scholar 

  3. Hirai K., Hirose M., Haikawa Y. and Takenake T., The development of Honda humanoid robot, in Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, 1998, pp. 1321–1326.

    Google Scholar 

  4. Collins S.H., Wisse M., and Ruina A., A three-dimensional passive-dynamic walking robot with two legs and knees, Int. J. Robotics Research, Vol. 20(7), 2001, pp. 607–615.

    Article  Google Scholar 

  5. Garcia M., Chatterjee A., Ruina A. and Coleman M., The simplest walking model: stability, complexity and scaling, J. Biomechanical Engineering, Vol. 120(2), 1998, pp. 281–288.

    Article  Google Scholar 

  6. Goswami A., Thuilot B., and Espiau B., A study of the passive gait of a compass-like biped robot: symmetry and chaos, Int. J. Robotics Research, Vol. 17(12), 1998, pp. 1282–1301.

    Article  Google Scholar 

  7. Collins S.H., Ruina A., Tedrake R., and Wisse M., Efficient bipedal robots based on passive-dynamic walkers, Science, Vol. 307, 2005, pp. 1082–1085.

    Article  Google Scholar 

  8. Kuo A.D., Energetics of actively powered locomotion using the simplest walking model, J. Biomechanical Engineering, Vol. 124, 2002, pp. 113–120.

    Article  Google Scholar 

  9. Wisse M. and van Frankenhuyzen J., Design and construction of MIKE; a 2-D autonomous biped based on passive dynamic walking, in Proc. Conf. on Adaptive Motion of Animals and Machines, Kyoto, Japan, 2003.

    Google Scholar 

  10. Kövecses J., Piedboeuf J.C., and Lange C., Dynamics modeling and simulation of constrained robotic systems, Trans. Mechatronics, Vol. 8(2), 2003, pp. 165–177.

    Google Scholar 

  11. Modarres Najafabadi S.A., Kövecses J., and Angeles J., Energy analysis and decoupling in three-dimensional impacts of multibody systems, J. Appl. Mech., Vol. 74(5), 2007, {pp. 845–851.}

    Article  Google Scholar 

  12. Pars L.A., A treatise on analytical dynamics, Heinemann, London, England, 1965.

    MATH  Google Scholar 

  13. Kövecses J. and Cleghorn W.L., Finite and impulsive motion of constrained mechanical systems via Jourdain’s principle: discrete and hybrid parameter models, Int. J. Non-Linear Mechanics, Vol. 38(6), 2003, pp. 935–956.

    Article  MATH  Google Scholar 

  14. Kwan M. and Hubbard M., Optimal foot shape for a passive dynamic biped, J. Theoretical Biol., Vol. 248(2), 2007, pp. 331–339.

    Article  Google Scholar 

  15. Asano F. and Luo Z.W., The effect of semicircular feet on energy dissipation by heel-strike in dynamic biped locomotion, in Proc. IEEE Int. Conf. Robotics and Automation, Rome, Italy, 2007, pp. 3976–3981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Font, J.M., Kövecses, J. (2009). Dynamics of Heel Strike in Bipedal Systems with Circular Feet. In: Ceccarelli, M. (eds) Proceedings of EUCOMES 08. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8915-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8915-2_55

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8914-5

  • Online ISBN: 978-1-4020-8915-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics