Skip to main content

An Integrated Differentiation-Projection Approach for the Kinematic Data Consistency of Biomechanical Systems

  • Conference paper
  • 2473 Accesses

Abstract

Several sources of error corrupt the results obtained in the kinematic and dynamic analysis of biomechanical systems and reduce its usefulness. The main source of error is the inaccuracy of velocities and accelerations derived from experimentally measured displacements of markers placed on the skin of joints. This error is mainly due to the amplification of high-frequency low-amplitude noise introduced by the motion capture system when the raw displacement signals are differentiated. Another source of error is the skin motion artifact, that produces violations of the kinematic constraint equations of the multibody system. An integrated differentiation-projection approach to ensure the kinematic data consistency in the context of the analysis of biomechanical systems is presented. The raw data differentiation problem is solved by applying a smoothing-differentiation technique based on the Newmark integration scheme. Several benchmark kinematic signals that include computer generated data of a four-bar mechanism were processed using the differentiation-projection method to study its performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hatze, H., The fundamental problem of myoskeletal inverse dynamics and its implications, Journal of Biomechanics, Vol. 35, 2002, pp. 109–115.

    Article  Google Scholar 

  2. Vaughan, C. L., Smoothing and differentiation of displacement-time data: an application of splines and digital filtering, International Journal of Bio-Medical Computing, Vol. 13, 1982, pp. 375–386.

    Article  Google Scholar 

  3. Dowling, J., A modelling strategy for the smoothing of biomechanical data, In: B. Johnsson, (Ed.), Biomechanics, Vol. XB. Human Kinetics, Champaign, IL, pp. 1163–1167, 1985.

    Google Scholar 

  4. Alonso, F. J., Del Castillo, J. M., Pintado, P., Application of singular spectrum analysis to the smoothing of raw kinematic signals, Journal of Biomechanics, Vol. 38, 2005, pp. 1085–1092.

    Article  Google Scholar 

  5. Newmark, N. M., A method of computation for structural dynamics, Journal of Engineering Mechanics Division, Proceedings of ASCE, Vol. 85 (EM3), 1959, pp. 67–94.

    Google Scholar 

  6. Silva, M. P. T., Ambròsio, J. A. C., Kinematic data consistency in the inverse dynamic analysis of biomechanical systems, Multibody System Dynamics, Vol. 8, 2002, pp. 219–239.

    Article  MATH  Google Scholar 

  7. Alonso, F. J., Del Castillo, J. M., Pintado, P., Motion data processing and wobbling mass modelling in the inverse dynamics of skeletal models, Mechanism and Machine Theory, Vol. 42, 2007, pp. 1153–1169.

    Article  MATH  Google Scholar 

  8. Bayo, E., Ledesma, R., Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics, Nonlinear Dynamics, Vol. 9, 1996, pp. 113–130.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Alonso, F., Cuadrado, J., Pintado, P. (2009). An Integrated Differentiation-Projection Approach for the Kinematic Data Consistency of Biomechanical Systems. In: Ceccarelli, M. (eds) Proceedings of EUCOMES 08. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8915-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8915-2_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8914-5

  • Online ISBN: 978-1-4020-8915-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics