Skip to main content

Evolving Four-Bars for Optimal Synthesis

  • Conference paper
Proceedings of EUCOMES 08

Abstract

We present an evolution-based method for optimal mechanism {synthesis}. It is based on the embedding of the Euclidean motion group in the space of affine displacements upon which an object-oriented Euclidean metric is imposed. This Euclidean structure allows the use of curve and surface evolution techniques from computer aided design and image processing. We demonstrate the algorithm by synthesizing planar four-bar mechanisms and we show how to modify it so that the resulting four-bar is free of circuit defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M. Jüttler, B. (2007), “Approximation Flows in Shape Manifolds”, in: Curve and Surface Design, Avignon 2006, ed. by Chenin, P., Lyche, T. and Schumaker, L. L., Nashboro Press, pp. 1–10.

    Google Scholar 

  2. Aigner, M. and Jüttler, B. (2008), Gauss-Newton-type Techniques for Robustly Fitting Implicitly Defined Curves and Surfaces to Unorganized Data Points, FSP Report Industrial geomentry 65, To appear in Proc. Shape Modelling International 2008, IEEE; available at http://www.ig.jku.at, University Linz.

  3. Ainger, M., Šír, Z. and Jüttler, B. (2007), “Evolution-Based Least-Squares Fitting Using Pythagorean Hodograph Spline Curves”, Comput. Aided Geom. Design 24:6, pp. 310–322.

    Article  MathSciNet  Google Scholar 

  4. Angeles, J. (2006), “Is There a Characteristic Length of Rigid-Body Displacements?”, Mech. Machine Theory 41:8, pp. 884–896.

    Article  MATH  Google Scholar 

  5. Belta, C. and Kumar, V. (2002), “An SVD-Based Projection Method for Interpolation on SE(3)”, IEEE Trans. Robotics Automation18:3, pp. 334–345.

    Article  Google Scholar 

  6. Cabrera, J. A., Simon, A. and Prado, M. (2002), “Optimal Synthesis of Mechanisms with Genetic Algorithms”, Mech. Machine Theory 37:10, pp. 1165–1177.

    Article  MATH  Google Scholar 

  7. Chase, T. R. and Mirth, J. A. (1993), “Circuits and Branches of Single-Degree-of-Freedom Planer Linkages”, ASME J. Mechanical Design 115:2, pp. 223–230.

    Article  Google Scholar 

  8. Chen, C. and Angeles, J. (2007), “Kinematic Synthesis of an Eight-Bar Linkage to Visit Eleven Poses Exactly”, in: Proc. CDEN/C2E2 2007 Conference, Winnipeg, Alberta.

    Google Scholar 

  9. Chirikjian, G. S. and Zhou, S. (1998), “Metrics on Motion and Deformation of Solid Models”, ASME J. Mechanical Design 120:2, pp. 252–261.

    Article  Google Scholar 

  10. Hayes, M. J. D., Luu, T. and Chang, X.-W. (2004), “Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms”, in: Advances in Robot Kinematics, ed. by Lenarˇiˇ, J. and Galletti, C., Kluwer Academic Publishers.

    Google Scholar 

  11. Hofer, M. and Pottmann, H. (2004), “Energy-Minimizing Splines in Manifolds”, Transactions on Graphics 23:3, Proc. of ACM SIGGRAPH 2004, pp. 284–293.

    Article  Google Scholar 

  12. Hofer, M., Pottmann, H. and Ravani, B. (2004), “From curve design algorithms to the design of rigid body motions”, The Visual Computer 20:5, pp. 279–297.

    Article  Google Scholar 

  13. Kunjur, A. and Krishnamurty, S. (1995), “Genetic Algorithms in Mechanism Synthesis”, in: Fourth Applied Mechanisms and Robotics Conference AMR 95-068, Cincinnati, Ohio, pp. 1–7.

    Google Scholar 

  14. Larochelle, P. M., Murray, A. P. and Angeles, J. (2004), “SVD and PD Based Projection Metrics on SE(n)”,in: On Advances in Robot Kinematics, ed. by Lenarˇiˇ, J. and Galetti, C., Dordrecht, Boston and London: Kluwer Academic Publishers, pp. 13–22.

    Google Scholar 

  15. Nawratil, G. (2007), “New Performance Indices for 6R Robots”, Mech. Machine Theory 42:11, pp. 1499–1511.

    Article  MATH  Google Scholar 

  16. Nawratil, G., Pottmann, H. and Ravani, B. (2007), Generalized Penetration Depth Computation Based on Kinematical Geometry, Geometry Preprint Series 172, Vienna University of Technology.

    Google Scholar 

  17. Shiakolas, P. S., Koladiya, D. and Kebrle, J. (2002), “On the Optimum Synthesis of Four-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions”, J. Inversive Problems Engineering 10:6, pp. 485–502.

    Article  Google Scholar 

  18. Shiakolas, P. S., Koladiya, D. and Kebrle, J. (2005), “On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique”, Mech. Machine Theory 4:3, pp. 319–335.

    Article  Google Scholar 

  19. Smaili, A. A. and Diab, N. A. (2005), “Optimum Synthesis of Mechanisms Using Tabu-Gradient Search Algorithm”, ASME J. Mechanical Design 127:5, pp. 917–923.

    Article  Google Scholar 

  20. Yao, J. and Angeles, J. (2000), “Computation of All Optimum Dyads in the Approximate Synthesis of Planar Linkages for Rigid-Body Guidance”, Mech. Machine Theory 35:8, pp. 1065–1078.

    Article  MATH  Google Scholar 

  21. Zhang, X., Zhou, J. and Ye, Y. (2000), “Optimal Mechanism Design Using Interior-point Methods”, Mech. Machine Theory 35:1, pp. 83–98.

    Article  MATH  Google Scholar 

  22. Zhou, H. and Cheung Edmund, H. M (2001), “Optimal Synthesis of Crank-Rocker Linkages for Path Generation Using the Orientation Structural Error of the Fixed Link”, Mech. Machine Theory 36:8, pp. 973–982.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Schröcker, HP., Jüttler, B., Aigner, M. (2009). Evolving Four-Bars for Optimal Synthesis. In: Ceccarelli, M. (eds) Proceedings of EUCOMES 08. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8915-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8915-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8914-5

  • Online ISBN: 978-1-4020-8915-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics