Skip to main content

Ultrashort Pulse PLD: A Technique for Nanofilm Fabrication

  • Conference paper
Functionalized Nanoscale Materials, Devices and Systems

Abstract

In the present contribution the peculiarities of laser ablation are discussed with special emphasis on the differences in the mechanisms of nanoparticle formation when ablating materials with pulses of nanosecond vs. femtosecond duration. In the case of ablation using nanosecond pulses the dominating species leaving the target surface are principally atoms and ions. Cluster formation and growth mainly take place, via nucleation and condensation, from the plasma plume within the surroundings. The principal control parameter is the ambient pressure. When the major goal is not the production of colloids (either in form of an aerosol or a sol) but layer growth instead, nanostructured films can be made at pressures higher than a few pascals. On the other hand, ablation with ultrashort pulses produces a plasma plume of biphasic character: its leading edge, consisting of ionic and atomic components is followed by a spatially and temporally well separated cloud of nanoparticles. In this case nanoparticle formation is a direct consequence of the interaction of the ultrashort laser pulse with the target material. This process even works in high vacuum, which provides an additional proof for that here, contrary to nanosecond-ablation, those are the laser parameters that control the characteristics of the nanoparticles produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chrisey, D., and Hubler, G. (1994), Pulsed Laser Deposition of Thin Films, Wiley, New York

    Google Scholar 

  2. Schou, J. (2006), Laser beam-solid interactions: fundamental aspects, in Y. Pauleau, Materials Surface Processing by Directed Energy Techniques, Elsevier, Amsterdam

    Google Scholar 

  3. Kroto, H, Heath, J., O’Brien, S., Curl, R., and Smalley, R. (1985), C60: Buckminsterfullerene, Nature 318, 162–163

    Article  CAS  Google Scholar 

  4. Bulgakova, N., Burakov, I., Meshcheryakov, Y., Stoian, R., Rosenfeld, A., and Hertel, I. (2007), JLMN-J. Laser Micro/Nanoeng. 2(1), 76–86

    CAS  Google Scholar 

  5. Yudasaka, M., Ichihashi, T., Komatsu, T., and Iijima, S. (1999), Chem. Phys. Lett. 299, 91–96

    Article  CAS  Google Scholar 

  6. Thess, A., Lee, R., Nikolaev, P., Dai, H, Petit, P., Robert, J., Xu, C., Lee, Y., Kim, S., Rinzler, A., Colbert, D., Scuseria, G., Tomanek, D., Fisher, J., and Smalley, R. (1996), Science 273, 483–487

    Article  CAS  Google Scholar 

  7. Rinzler, A., Liu, J., Dai, H, Nikolaev, P., Huffman, C., Rodriguez-Macias, F., Boul, F., Lu, A., Heymann, D., Colbert, D., Lee, R., Fisher, 1, Rao, A., Eklund, P., and Smalley, R. (1998), Appl. Phys. A 67, 29–37

    Article  CAS  Google Scholar 

  8. Dillon, A., Parilla, P., Jones, K., Riker, G., and Heben, M. (1998), A comparison of singlewall carbon nanotube production using continuous wave and pulsed laser vaporization, in R. K. Singh, D. H. Lowndes, D. B. Chrisey, E. Fogarassy, and J. Narayan (eds.), Advances in Laser Ablation of Materials. Mater. Res. Soc., Warrendale, PA, USA, pp. 403–408

    Google Scholar 

  9. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., and Iijima, S. (1999), J. Phys. Chem. B 103, 4346–4351

    Article  CAS  Google Scholar 

  10. Puretzky, A., Geohegan, D., Fan, X., and Pennycook, S. (2000), Appl. Phys. A 70, 153–160

    Article  CAS  Google Scholar 

  11. Puretzky, A., Schittenhelm, H., Fan, X., Lance, M., Allard, L., Jr., and Geohegan, D. (2002), Phys. Rev. B 65, 245425

    Article  Google Scholar 

  12. Puretzky, A., Geohegan, D., Fan, X., and Pennycook, S. (2000), Appl. Phys. Lett. 76, 182

    Article  CAS  Google Scholar 

  13. Amoruso, S., Toftmann, B., and Schou, J. (2004), Phys. Rev. E 69, 056403

    Article  Google Scholar 

  14. Geohegan, D. (1992), Thin Solid Films220, 138–145

    Article  CAS  Google Scholar 

  15. Amoruso, S., Toftmann, B., Schou, J., Velotta, R., and Wang, X. (2004), Thin Solid Films, 453/454, 562–572

    Article  Google Scholar 

  16. Henley, S., Carey, J., Silva, S., Fuge, G., Ashfold, M., and Anglos, D. (2005), Phys. Rev. B 72, 205413

    Article  Google Scholar 

  17. Geretovszky, Z., Haraszti, T., Szörényi, T., Antoni, F., and Fogarassy, E. (2003), Appl. Surf. Sci. 208–209, 566–574

    Article  Google Scholar 

  18. Henley, S., Carey, J., and Silva, S. (2004), Appl. Phys. Lett. 85(25), 6236–6238

    Article  CAS  Google Scholar 

  19. Bolgiaghi, D., Miotello, A., Mosaner, P., Ossi, P., and Radnóczi, G. (2005), Carbon 43, 2122

    Article  CAS  Google Scholar 

  20. Rode, A., Gamaly, E., and Luther-Davies, B. (2000), Appl. Phys. A 70, 135–144

    Article  CAS  Google Scholar 

  21. Henley, S., Carey, J., and Silva, S. (2006), Appl. Phys. Lett. 89, 183120

    Article  Google Scholar 

  22. Kabashin, A., Sylvestre, J., Patskovsky, S., and Meunier, M. (2002), J. Appl. Phys. 91, 3248

    Article  CAS  Google Scholar 

  23. Szörényi, T., and Fogarassy, E. (2003), J. Appl. Phys. 94, 2097–2101

    Article  Google Scholar 

  24. Szörényi, T., Antoni, F., Fogarassy, E., and Bertóti, I. (2000), Appl. Surf. Sci. 168, 248–250

    Article  Google Scholar 

  25. Hu, J., Yang, P., and Lieber, C. (1998), Phys. Rev. B 57, R3185

    Article  CAS  Google Scholar 

  26. Alvarez, F., dos Santos, M., and Hammer, P. (1998), Appl. Phys. Lett. 73, 3521–3523

    Article  CAS  Google Scholar 

  27. Walters, J., Kühn, M., Spaeth, C., Dooryhee, E., and Newport, R. (1998), J. Appl. Phys. 83, 3529–3534

    Article  CAS  Google Scholar 

  28. Spaeth, C., Kühn, M., Richter, R., Falke, U., Hietschold, M., Kilper, R., and Kreissig, U. (1998), Diamond Relat. Mater. 7, 1727–1733

    Article  CAS  Google Scholar 

  29. Fogarassy, E., Szörényi, T., Antoni, F., Stoquert, J., Pirio, G., Olivier, J., Legagneux, P., Boher, P., and Pons-Y-Moll, O. (2002), Appl. Surf. Sci. 197–198, 316–320

    Article  Google Scholar 

  30. Fogarassy, E., Szörényi, T., Antoni, F., Pirio, G., Olivier, J., Legagneux, P., and Boher, P. (2003), Appl. Phys. A 76, 15–19

    Article  CAS  Google Scholar 

  31. Geszti, O, Radnóczi, G., Bertóti, L, Szörényi, T., Antoni, F., and Fogarassy, E. (2002), Appl. Surf. Sci. 186, 502–506

    Article  CAS  Google Scholar 

  32. Marine, W., Patrone, L., Luk’yanchuk, B., and Sentis, M. (2000), Appl. Surf. Sci. 154–155, 345–352

    Article  Google Scholar 

  33. Patrone, L., Nelson, D., Safarov, V., Sentis, M., and Marine, W. (1999), J. Lumin. 80, 217–221

    Article  Google Scholar 

  34. Kabashin, A., and Meunier, M. (2006), Laser ablation based synthesis of nanomaterials and references therein, in J. Perriere, E. Millon, and E. Fogarassy (eds.), Recent Advances in Laser Processing of Materials, Elsevier, Amsterdam, pp. 1–36

    Chapter  Google Scholar 

  35. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H. (2000), J. Phys. Chem. B 104(35), 9111–9117

    Article  Google Scholar 

  36. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H. (2000), J. Phys. Chem. B 104(35), 8333–8337

    Article  Google Scholar 

  37. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H. (2001), J. Phys. Chem. B, 105(22), 5114–5120

    Article  Google Scholar 

  38. Szorenyi, T., et al., Proceedings of the 4th International Conference on Laser Ablation: Appl. Surf Sci. 127–129 and (2004), Proceedings of the 7th International Conference on Laser Ablation: Appl. Phys. A 79, 1373–1376

    Google Scholar 

  39. Banks, P., Dinh, L., Stuart, B., Feit, M., Komashko, A., Rubenchik, A., Perry, M., and McLean, W. (1999), Appl. Phys. A 69, S347–S353

    Article  CAS  Google Scholar 

  40. Szörényi, T. (2006), Carbon-based materials by pulsed laser deposition: from thin films to nanostructures and references therein, in J. Perriere, E. Millon and E. Fogarassy (eds.), Recent Advances in Laser Processing of Materials, Elsevier, Amsterdam, pp. 76–104

    Google Scholar 

  41. Amoruso, S., Ausanio, G., Barone, A., Bruzzese, R., Gragnaniello, L., Vitiello, M., and Wang, X. (2005), J. Phys. B: At. Mol. Opt. Phys. 38, L329–L338

    Article  CAS  Google Scholar 

  42. Amoruso, S., Ausanio, G., Bruzzese, R., Vitiello, M., and Wang, X. (2005), Phys. Rev. B 71, 033406

    Article  Google Scholar 

  43. Amoruso, S., Ausanio, G., Bruzzese, R., Gragnaniello, L., Lanotte, L., Vitiello, M., and Wang, X. (2006), Appl. Surf. Sci. 252, 4863–4870

    Article  CAS  Google Scholar 

  44. Albert, O., Roger, S., Glinec, Y., Loulergue, J., Etchepare, J., Boulmer-Leborgne, C., Perrière, J., and Millon, E. (2003), Appl. Phys. A: Mater. Sci. Process. 76, 319–323

    Article  CAS  Google Scholar 

  45. Scuderi, D., Benzerga, R., Albert, O., Reynier, B., and Etchepare, J. (2006), Appl. Surf Sci. 252, 4360–363

    Article  CAS  Google Scholar 

  46. Teghil, R., D’Alessio, L., De Bonis, A., Galasso, A., Villani, P., and Santagata, A. (2006), Thin Solid Films 515, 1411–1418

    Article  CAS  Google Scholar 

  47. Amoruso, S., Bruzzese, R., Wang, X., Nedialkov, N., and Atanasov, P. (2007), Nanotechnology 18, 145612

    Article  Google Scholar 

  48. Mannion, P., Favre, S., Ivanov, W., O’Connor, G., and Glynn, T. (2005), Experimental investigation of micromachining on metals with pulse durations in the range of the electronphonon relaxation time (pico to sub-picosecond), Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, Munich

    Google Scholar 

  49. Amoruso, S., Ausanio, G., Bruzzese, R., Lanotte, L., Scardi, P., Vitiello, M., and Wang, X. (2006), J. Phys.: Condens. Matter 18, L49–L53

    Article  CAS  Google Scholar 

  50. Amoruso, S., Ausanio, G., de Lisio, C., Iannotti, V., Vitiello, M., Wang, X., and Lanotte, L. (2005), Appl. Surf. Sci. 247, 71–75

    Article  CAS  Google Scholar 

  51. Liu, A., and Cohen, M. (1989), Science 245, 841–842

    Article  CAS  Google Scholar 

  52. Muhl, S., and Méndez, J. (1999), Diamond Relat. Mater. 8, 1809–1830

    Article  CAS  Google Scholar 

  53. Perrone, A. (2002), Jpn. J. Appl. Phys. 41, 2163–2170

    Article  CAS  Google Scholar 

  54. Acquaviva, S., Perrone, A., Zocco, A., Klini, A., and Fotakis, C. (2000), Thin Solid Films 373, 266–272

    Article  CAS  Google Scholar 

  55. Geretovszky, Z., Kántor, Z., Bertóti, I., and Szörényi, T.(2000), Appl. Phys. A 70, 9–11

    Article  CAS  Google Scholar 

  56. T. Csákó et al., Appl. Surf. Sci., to be published

    Google Scholar 

  57. Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, X., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., and Lereah, Y. (2004), Phys. Rev. B 694, 144119

    Article  Google Scholar 

  58. Vidal, F., Johnston, T., Laville, S., Barthélemy, O., Chaker, M., Le Drogoff, B., Margot, J., and Sabsabi, M. (2001), Phys. Rev. Lett. 86, 2573

    Article  CAS  Google Scholar 

  59. Barcikowski, S., Hahn, A., Kabashin, A., and Chichkov, B. (2007), Appl. Phys. A 87, 47–55

    Article  CAS  Google Scholar 

  60. Tsuji, T., Kakita, T., and Tsuji, M. (2003), Appl. Surf. Sci. 206 314–320

    Article  CAS  Google Scholar 

  61. Kabashin, A., and Meunier, M. (2003), J. Appl. Phys. 94, 7941–7943

    Article  CAS  Google Scholar 

  62. Kabashin, A., Meunier, M., Kingston, C., and Luong, J. (2003), J. Phys. Chem. B 107, 4527–4531

    Article  CAS  Google Scholar 

  63. Sylvestre, J., Poulin, S., Kabashin, A., Sacher, E., Meunier, M., and Luong, J. (2004), J. Phys. Chem. B 108, 16864–16869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Szörényi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Szörényi, T., Geretovszky, Z. (2008). Ultrashort Pulse PLD: A Technique for Nanofilm Fabrication. In: Vaseashta, A., Mihailescu, I.N. (eds) Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8903-9_8

Download citation

Publish with us

Policies and ethics