Skip to main content

Flexoelectricity: A Universal Sensoric Mechanism in Biomembranes and in Chem.-Biosensors

  • Conference paper
Functionalized Nanoscale Materials, Devices and Systems

Abstract

Flexoelectricity provides a reciprocal relationship between electricity and mechanics in membranes, i.e., between membrane curvature and polarization. Experimental evidence of biomembrane flexoelectricity (including direct and converse flexoelectric effect) is reviewed. Biological implications of flexoelectricity in mechanosensitivity, electromotility and hearing is underlined. Flexoelectricity enables membrane structures to function like soft micro- and nano-machines, sensors and actuators, thus giving important input to sensoric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller, P., Rudin, D., Ti Tien, H., and Wescott, W. (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194, 979–980

    Article  CAS  Google Scholar 

  2. Coronado, R., and Latorre, R. (1983) Phospholipid bilayers made from monolayers on patchclamp pipettes, Biophys. J. 43, 231–236

    CAS  Google Scholar 

  3. Petrov, A. (1999) The Lyotropic State of Matter. Molecular Physics and Living Matter Physics, Gordon & Breach, New York

    Google Scholar 

  4. Passechnik, V., and Sokolov, V. (1973) Permeability change of modified bimolecular phospholipid membranes accompanying periodical expansion, Biofizika 18, 655–660

    Google Scholar 

  5. Ochs, A., and Burton, R. (1974) Electrical response to vibration of a lipid bilayer membrane, Biophys. J. 14, 473–489

    Article  CAS  Google Scholar 

  6. Petrov, A. (1975) Flexoelectric model of active transport, in J. Vassileva (ed.), Physical and Chemical Bases of Biological Information Transfer, Plenum, New York, pp. 111–125

    Google Scholar 

  7. Petrov, A., and Derzhanski, A. (1976) On some problems in the theory of elastic and flexoelectric effects in bilayer lipid membranes and biomembranes, J. Phys. Suppl. 37, C3-155–C3-160

    Google Scholar 

  8. Derzhanski, A., Petrov, A., and Pavloff, Y. (1981) Curvature induced conductive and displacement currents through lipid bilayers, J. Phys. Lett. 42, L-119–L-122

    Article  Google Scholar 

  9. Petrov, A., and Sokolov, V. (1986) Curvature-electric effect in black lipid membranes, Eur. Biophys. J. 13, 139–155

    Article  CAS  Google Scholar 

  10. Hristova, K., Bivas, I., and Derzhanski, A. (1992) Frequency dependence of the membrane flexoelectric voltage response. Adsorption of multivalent counterions on the surface of curved lipid bilayer, Mol. Cryst. Liq. Cryst. 215, 237–244

    Article  Google Scholar 

  11. Szekely, J., and Morash, B. (1980) The effect of temperature on capacitance changes in an oscillating model membrane, Biochim. Biophys. Acta 599, 73–80

    Article  CAS  Google Scholar 

  12. Wobschall, D. (1971) Bilayer membrane elasticity and dynamic response, J. Colloid Interface Sci. 36, 385–396

    Article  CAS  Google Scholar 

  13. Derzhanski, A., Petrov, A., Todorov, A., and Hristova, K. (1990) Flexoelectricity of lipid bilayers, Liq. Cryst. 7, 439–449

    Article  CAS  Google Scholar 

  14. Todorov, A., Petrov, A., Brandt, M., and Fendler, J. (1991) Electrical and real-time stroboscopic interferometric measurements of bilayer lipid membrane flexoelectricity, Langmuir 7, 3127–3137

    Article  CAS  Google Scholar 

  15. Todorov, A., Petrov, A., and Fendler, J. (1994) Flexoelectricity of charged and dipolar BLM studied by stroboscopic interferometry, Langmuir 10, 2344–2350

    Article  CAS  Google Scholar 

  16. Todorov, A. (1993) Experimental investigations of direct and converse flexoelectric effect in bilayer lipid membranes, Ph.D. thesis, Syracuse University, New York

    Google Scholar 

  17. Todorov, A., Petrov, A., and Fendler, J. (1994) First observation of the converse flexoelectric effect in bilayer lipid membranes, J. Phys. Chem. 98, 3076–3079

    Article  CAS  Google Scholar 

  18. Sun, K. (1997) Toward molecular mechanoelectric sensors: flexoelectric sensitivity of lipid bilayers to structure, location and orientation of bound amphiphilic ions, J. Phys. Chem. 101, 6327

    CAS  Google Scholar 

  19. Zheliaskova, A., Naidenova, S., Marinov, Y., Mellor, I., Usherwood, P., and Petrov, A. (2001) Detection of heavy metal ions (Cd2+ and Hg2+) by their influence on flexoelectricity of patch clamped membranes, C.R. Acad. Bulg. Sci. 51(12), 53–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Petrov, A.G. (2008). Flexoelectricity: A Universal Sensoric Mechanism in Biomembranes and in Chem.-Biosensors. In: Vaseashta, A., Mihailescu, I.N. (eds) Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8903-9_6

Download citation

Publish with us

Policies and ethics