Theoretical Study of the Adsorbed Small Molecule on Twisted Nanotubes by Atomic Scale Simulations

  • V. Chihaia
  • A. Ghita
  • B. -S. Seong
  • S. -H. Suh
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The adsorption of the hydrogen and methane molecules on the untwisted and twisted carbon nanotubes of type (5,5) are investigated by atomic scale simulation, using the empirical bond order (REBO) force field.1 It is found that the adsorptions of both molecules on the untwisted nanotube are endothermic processes, while the adsorptions on the twisted nanotube become exothermic and moreover the molecules are dissociating on some of the adsorption sites.


H2 CH4 Adsorption carbon nanotube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brenner, D.W. et al. (2002)J. Phys. : Condens. Matter. 14, 783–802CrossRefGoogle Scholar
  2. 2.
    Iijima, S. (1991) Nature 354, 56–58CrossRefGoogle Scholar
  3. 3.
    Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H. (2000) Science 287, 622–625; Sumanasekera, G.U., Adu, C.K.W., Fang, S., and Eklund, P.C. (2000) Phys. Rev. Lett. 85, 1096–1099; Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A. (2000) Science 287, 1801–1804CrossRefGoogle Scholar
  4. 4.
    Stan, G., and Cole, M.W. (1998) J. Low Temp. Phys. 110, 539–544; Ahn, C.C., Ye, Y., Ratnakumar, B.V., Witham, C., Bowman, R.C., Jr., and Fultz, B. (1998) Appl. Phys. Lett. 73, 3378–3380; Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H. (1993) Naturer 362, 522–525CrossRefGoogle Scholar
  5. 5.
    Tsang, S.C., Harris, P.J.F., and Green, M.L.H. (1993) Nature, 362, 520–522; Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H. (2002) Nature 372, 159–162; Sloan, J., Hammer, J., Zwiefka-Sibley, M., and Green, M.L.H. (1998) J. Chem. Soc., Chem. Commun. 3, 347–348; Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., and Rao, C.N.R. (1996) J. Phys. B: At. Mol. Opt. Phys. 29, 4925–4934CrossRefGoogle Scholar
  6. 6.
    Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M.F., and Ruoff, R.S. (1999) J. Phys. Chem. B 103, 4330–4337CrossRefGoogle Scholar
  7. 7.
    Ni, B., and Sinnott, S.B. (2000) Phys. Rev. B 61, R16343–R16346CrossRefGoogle Scholar
  8. 8.
    Dang, S., Ozturk, Y., Chiraci, S., and Ildirim, T. (2005) Phys. Rev. B 72, 155404CrossRefGoogle Scholar
  9. 9.
    Lennard-Jones, L.E. (1924) Proc. R. Soc. London, Ser. A 106, 441–462CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Berendsen, H.J.C., Van Gunsteren Postma, W.F.A., Nola, D., and Haak, J.R. (1984) J. Chem. Phys. 81, 3684–3690CrossRefGoogle Scholar
  12. 12.
    Gear, C.W. (1971) Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, NJ), p. 148Google Scholar
  13. 13.
  14. 14.
    Stone, A.J. and Wales, D.J. (1986) Chem. Phys. Lett. 128, 501–503CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • V. Chihaia
    • 1
  • A. Ghita
    • 1
  • B. -S. Seong
    • 2
  • S. -H. Suh
    • 3
  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  2. 2.HANARO CenterKorea Atomic Energy Research InstituteTaejonKorea
  3. 3.Department of Chemical EngineeringKeimyung UniversityTaeguKorea

Personalised recommendations