Skip to main content

Hydrogen Microsensor Based on NiO Thin Films

  • Conference paper
Functionalized Nanoscale Materials, Devices and Systems

Abstract

A multitude of industries use H2 either as part of their process or as a fuel. All these applications motivate nowadays the development of hydrogen sensor devices which enable its safe and controlled use. Since H2 is explosive above the lower explosion limit at 40,000 ppm, devices which permit the detection of its presence and measure its concentration become indispensable. In this work, we present a microsensor based on NiO thin films produced with dc reactive magnetron sputtering on GaAs, with an incorporated Pt heater, all on a DO-8 package ready for use. The microsensor was tested to H2 concentrations 5,000 and 10,000 ppm at different working temperatures. The change of the electrical resistance of NiO thin films was the signal for hydrogen sensing. The response of the sensor was not proportional to concentration of the gas neither to the working temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuel Cell Standards Committee (2001) “Basic Consideration for Safety of Hydrogen Systems”, Technical Report ISO TC 197 N166, International Standards Organization

    Google Scholar 

  2. Hotovy, I., Huran, I, Siciliano, P., Capone, S., Spiess, L., and Rehacek, V. (2004) Sens Actuators B, 103, 300

    Article  Google Scholar 

  3. Seehra, M., and Giebultowicz, T. (1988) Phys. Rev. B 38, 11898

    Article  CAS  Google Scholar 

  4. Blaumer, M., and Freund, H. (1999) Prog. Surf. Sci. 61, 127

    Article  Google Scholar 

  5. Jiao, Z., Wu, M., Qin, Z., and Xu, H (2003) Nanotechnology 14, 458

    Article  CAS  Google Scholar 

  6. Chen, X., Wu, N., Smith, L., and Ignatiev, A. (2004) Appl. Phys. Lett. 84, 2700

    Article  CAS  Google Scholar 

  7. Shi, J., Zhu, Y., Zhang, X., and Baeyens, W. (2004) Trends Anal. Chem. 23, 1

    Article  Google Scholar 

  8. Ando, M., Sato, Y., Tamura, S., and Kobayashi, T. (1999) Solid State Ionics 121, 307

    Article  CAS  Google Scholar 

  9. Wang, Y., Ma, C., Sun, X., and Li, H. (2004) Micropor. Mesopor. Mater. 71, 99

    Article  CAS  Google Scholar 

  10. Jiao, Z., Wu, M., Qin, Z., and Xu, H. (2003) Nanotechnology 14, 458

    Article  CAS  Google Scholar 

  11. Souza Cruz, T., Hleinke, M., and Gorenstein, A. (2002) Appl. Phys. Lett. 81, 4922

    Article  CAS  Google Scholar 

  12. Lee, M., Seo, S., Seo, D., Jeong, E., and Yoo, I. (2004) Integr. Ferroelectr. 68, 19

    Article  CAS  Google Scholar 

  13. Zbroniec, L., Sasaki, T., and Koshizaki, N. (2005) J. Ceram. Process. Res. 6, 134

    Google Scholar 

  14. Sasi, B., and Gopchandran, K. (2007) Nanotechnology 18, 115613

    Article  Google Scholar 

  15. Lee, M., Seo, S., Seo, D., Jeong, E., and Yoo, I. (2004) Integr. Ferroelectr. 68, 19–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kompitsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Fasaki, I. et al. (2008). Hydrogen Microsensor Based on NiO Thin Films. In: Vaseashta, A., Mihailescu, I.N. (eds) Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8903-9_35

Download citation

Publish with us

Policies and ethics