X-Ray Photoelectron Spectroscopy and Tribology Studies of Annealed Fullerene-like WS2 Nanoparticles

  • F. Kopnov
  • R. Tenne
  • B. Späth
  • W. Jägermann
  • H. Cohen
  • Y. Feldman
  • A. Zak
  • A. Moshkovich
  • L. Rapoport
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The temporal chemical changes occurring at the surface of fullerene-like (IF) nanoparticles of WS2 were investigated using X-ray photo-electron spectroscopy (XPS) and compared to those of bulk powder (2H) of the same material. It is possible to follow the long term (surface oxidation and carbonization) occurring at defects on the outermost surface (0001) layer of the fullerene-like nanoparticles. Similar but perhaps more distinctive changes are observed on the prismatic (hk0) surfaces of the 2H powder. Vacuum annealing is shown to remove most of these changes and bring the surface close to its stoichiometric composition. In accordance with previous measurements, further evidence is obtained for the existence of water molecules which are entrapped in the hollow core and interstitial defects of the fullerene-like nanoparticles during the synthesis. They are also shown to be removed by the vacuum annealing process. Chemically resolved electrical measurements (CREM) in the XPS show that the vacuum annealed IF samples become more intrinsic. Finally, tribological measurements show that the vacuum annealed IF samples perform better as an additive to oil than the non-annealed IF samples and the bulk (2H) platelets powder.

Keywords

IF-WS2 nanoparticles XPS (X-ray photoelectron spectroscopy) tribology annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, I, and Yoffe, A. (1969) Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties, Adv. Phys. 18(73), 193CrossRefGoogle Scholar
  2. 2.
    Watanabe, S., Noshiro, I, and Miyake, S. (2004) Tribological characteristics of WS2/MoS2 solid lubricating multilayer films, Surf. Coat. Technol. 183(2–3), 347–351CrossRefGoogle Scholar
  3. 3.
    Alonso, G., Del Valle, M., Cruz, J., Licea-Claverie, A., Petranovskii, V., and Fuentes, S. (1998) Preparation of MoS2 and WS2 catalysts by in situ decomposition of ammonium thiosalts, Catal. Lett. 52(1–2), 55–61CrossRefGoogle Scholar
  4. 4.
    Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernede, J., Tedd, J., Pouzet, J., and Salardenne, J. (1997) MS2 (M=W, Mo) Photosensitive thin films for solar cells, Sol. Energy Mater. Sol. Cells 46(2), 115–121CrossRefGoogle Scholar
  5. 5.
    Remskar, M. (2004) Inorganic nanotubes, Adv. Mater. 16(17), 1497–1504CrossRefGoogle Scholar
  6. 6.
    Therese, H., Zink, N., Kolb, U., and Tremel, W. (2006) Synthesis of MoO3 nanostructures and their facile conversion to MoS2 fullerenes and nanotubes, Solid State Sci. 8(10), 1133–1137CrossRefGoogle Scholar
  7. 7.
    Hassanien, A., Tokumoto, M., Mrzel, A., Mihailovic, D., and Kataura, H. (2005) Structural and mechanical properties of MoS2-I-x nanotubes and Mo6SxIy nanowires, Physica E 29 (3–4), 684–688CrossRefGoogle Scholar
  8. 8.
    Loh, k., Zhang, h., Chen, W., and Ji, W. (2006) Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties, J. Phys. Chem. B 110(3), 1235–1239CrossRefGoogle Scholar
  9. 9.
    Milosevic, I., Vukovic, T., Damnjanovic, M., and Nikolic, B. (2000) Symmetry based properties of the transition metal dichalcogenide nanotubes, Eur. Phys. J. B 17(4), 707–712CrossRefGoogle Scholar
  10. 10.
    Schwarz, U., Komura, S., and Safran, S. (2000) Deformation and tribology of multi-walled hollow nanoparticles, Europhys. Lett. 50(6), 762–768CrossRefGoogle Scholar
  11. 11.
    Hu, J., Bultman, J., and Zabinski, J. (2004) Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability, Tribol. Lett. 17(3), 543–546CrossRefGoogle Scholar
  12. 12.
    Panich, A., Kopnov, F., and Tenne, R. (2006) Nuclear magnetic resonance study of fullerene-like WS2, J. Nanosci. Nanotechnol. 6(6), 1678–1683CrossRefGoogle Scholar
  13. 13.
    Kopnov, F., Yoffe, A., Leitus, G., and Tenne, R. (2006) Transport properties of fullerene-like WS2 nanoparticles, Phys. Stat. Sol. (b) 243(6), 1229–1240CrossRefGoogle Scholar
  14. 14.
    Feldman, Y., Frey, G., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J., and Tenne, R. (1996) Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism, J. Am. Chem. Soc. 118(23), 5362–5367CrossRefGoogle Scholar
  15. 15.
    Sarin, V. (1975) Morphological changes occurring during reduction of WO3, J. Mater. Sci. 10(4), 593–598CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • F. Kopnov
    • 1
  • R. Tenne
    • 1
  • B. Späth
    • 2
  • W. Jägermann
    • 2
  • H. Cohen
    • 3
  • Y. Feldman
    • 3
  • A. Zak
    • 4
  • A. Moshkovich
    • 5
  • L. Rapoport
    • 5
  1. 1.Department of Materials and InterfacesWeizmann InstituteRehovotIsrael
  2. 2.Fachgebiet Oberflaechenforschung, Fachbereich MaterialwissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of Chemical Research SupportWeizmann InstituteRehovotIsrael
  4. 4.“NanoMaterials” Ltd.Nes ZionaIsrael
  5. 5.Department of ScienceHolon Institute of TechnologyHolonIsrael

Personalised recommendations