Advertisement

Diamond like Carbon Films: Growth and Characterization

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Present study is devoted to the application of the DLC films as wear resistant coatings for protection of surfaces of the steel tools as well as to the investigation of the optical and hydrophobic properties of SiOx and silicon doped DLC films. It was found, that in the case of the deposition of DLC on the steel surface chemical composition of DLC/interlayer interface as well as mechanical stress in interlayers and composition of hydrocarbon gas should be taken into account. Raman scattering spectra of the all synthesized amorphous carbon films were typical for DLC films. In the case of SiOx containing DLC films, Raman scattering spectra additional features typical for trans-polyacetylene-like segments has been observed. Contact angle with water of the all investigated films did not depend on the deposition conditions. Absorption coefficient of HMDSO + C2H2 films was several times larger than absorption coefficient of the HMDSO + H2 films, but substantially lower than absorption coefficient of DLC films deposited from acetylene gas. Additional Ar or N2 gas flow during the deposition resulted in increased optical transparence of SiOx doped DLC films (HMDSO + H2 films). Despite lower absorption coefficient, optical bandgap of HMDSO + C2H2 DLC films was smaller that optical bandgap of “conventional” hydrogenated DLC film.

Keywords

DLC ion beam synthesis SiOx containing DLC XPS study Raman scattering spectroscopy optical properties contact angle with water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, J. (2002) Materials Science and Engineering: R: Reports vol.37, p. 129–281CrossRefGoogle Scholar
  2. 2.
    Taube, K. (1998) Surface and Coatings Technology vol.98, p.976–984CrossRefGoogle Scholar
  3. 3.
    Grill, A. (2003) Diamond and Related Materials vol.12, p. 166–170CrossRefGoogle Scholar
  4. 4.
    Hauert, R. (2003) Diamond and Related Materials vol.12, p.583–589CrossRefGoogle Scholar
  5. 5.
    Chi-Lung Chang, Da-Yung Wang (2001) Diamond and Related Materials vol.10, p.1528–1534CrossRefGoogle Scholar
  6. 6.
    Michlera, T., Grischke, M., Bewilogu, K., Hieke, A. (1999) Surface and Coatings Technology vol.111, p.41–45CrossRefGoogle Scholar
  7. 7.
    Chi-Lung Chang, Da-Yung Wang (2001) Diamond and Related Materials vol.10, p.1528–1534CrossRefGoogle Scholar
  8. 8.
    Podgornik, B., Vizintin, J., Ronkainen, H., Holmberg, K. (2000) Thin Solid Films vol. 377–378, p.254–260CrossRefGoogle Scholar
  9. 9.
    Guo, L. Jay (2004) Journal of Physics D: Applied Physics vol. 37, p.R123–R141CrossRefGoogle Scholar
  10. 10.
    Harriott, L.R. (1998) Materials Science in Semiconductor Processing vol.1, p.93–97CrossRefGoogle Scholar
  11. 11.
    Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A., Groning, P. (1999) Applied Surface Science vol.143, p.301–308CrossRefGoogle Scholar
  12. 12.
    Soo-Beom Jo, Min-Woo Lee, Se-Geun Park, Jung-Keun Suh, Beom-hoan (2004) Surface and Coatings Technology vol.188–189, p.452–458CrossRefGoogle Scholar
  13. 13.
    Schift, H., Saxer, S., Park, S., Padeste, C., Pieles, U., Gobrecht, J. (2005) Nanotechnology vol.16, p.S171–S175CrossRefGoogle Scholar
  14. 14.
    Park, S., Schift, H. H., Padeste, C., Schnyder, B., Kötz, R., Gobrecht, J. (2004) Microelectronic Engineering vol.73–74, p.196–201CrossRefGoogle Scholar
  15. 15.
    Watanabe, K., Morita, T., Kometani, R. et al. (2004) Journal of Vacuum Science & Technology B vol.22, p.22–26CrossRefGoogle Scholar
  16. 16.
    Morita, T., Watanabe, K., Kometani, R. (2003) Japanese Journal of Applied Physics Part 1 vol.42, p.3874–3876CrossRefGoogle Scholar
  17. 17.
    Zhurin, V.V., Kaufman, H.R., Robinson, R.S. (1999) Plasma Sources Science and Technology vol.8, p.Rl–R20CrossRefGoogle Scholar
  18. 18.
    Kopustinskas, V., Meškinis, S., Grigaliūnas, V., Tamulevičius, S., Pucėta, M., Niaura, G. et al. (2002) Surface and Coatings Technology vol. 151–152, p.180–183CrossRefGoogle Scholar
  19. 19.
    Meškinis, S., Andrulevičius, M., Kopustinskas, V., Tamulevičius, S. (2005) Applied Surface Science vol.249, p.295–302CrossRefGoogle Scholar
  20. 20.
    Meškinis, Š., Andrulevičius, M., Tamulevičius, S., Kopustinskas, V., Šlapikas, K., Jankauskas, J., Čižiute, B. (2006) Vacuum vol. 80, p.1007–1011CrossRefGoogle Scholar
  21. 21.
    Kopustinskas, V., Meškinis, S., Tamulevičius, S., Andrulevičius, M., Čižiūte, B., Niaura, G. (2006) Surface and Coatings Technology vol. 200, p.6240–6244CrossRefGoogle Scholar
  22. 22.
    Meškinis, S., Kopustinskas, V., Slapikas, K., Tamulevičius, S., Guobienė, A., Gudaitis, R., Grigaliūnas, V. Thin Solid Films vol.515, p. 636–639Google Scholar
  23. 23.
    Miola, E.J., de Souza, S.D., Nascente, P.A.P., Olzon-Dionysio, M., Olivieri, C.A., Spinelli, D. (1999) Applied Surface Science vol. 144–145, p.272–277CrossRefGoogle Scholar
  24. 24.
    Roosendaal, S. J., van Asselen, B., Elsenaar, J.W., Vredenberg, A.M., Habraken, F.H.P.M. (1999) Surface Science vol. 442, p.329–337CrossRefGoogle Scholar
  25. 25.
    Ku-Ling Chang, Shih-Chun Chung, Shih-Hsiang Lai, Han-C. Shih (2004) Applied Surface Science vol.236, p.406–415CrossRefGoogle Scholar
  26. 26.
    Alphonsa, I., Chainani, A., Raole, P.M., Ganguli, B., John, P.I. (2002) Surface and Coatings Technology vol.150, p.263–268CrossRefGoogle Scholar
  27. 27.
    Tamulevičius, S. Kopustinskas, V., Meškinis, Š., Augulis, L. (2004) Carbon vol.42, p. 1085–1088CrossRefGoogle Scholar
  28. 28.
    Toth, A., Mohai, M., Ujvari, T., Bertoti, I. (2005) Thin Solid Films vol.482, p. 183–187CrossRefGoogle Scholar
  29. 29.
    Santoni, A., Frycek, R., Castrucci, P., Scarselli, M., De Crescenzi, M. (2005) Surface Science vol.582, p. 125–136CrossRefGoogle Scholar
  30. 30.
    Veres, M., Koos, M., Toth, S., Fule, M., Pocsik, I., Toth, A., Mohai, M., Bertoti, I. (2005) Diamond and Related Materials vol.14, p.1051–1056CrossRefGoogle Scholar
  31. 31.
    Zhang, P., Tay, B.K., Yu, G.Q., Lau, S.P., Fu, Y.Q. (2004) Diamond and Related Materials vol.13, p.459–464CrossRefGoogle Scholar
  32. 32.
    NIST XPS database http://srdata.nist.gov/xps/
  33. 33.
    Shou-Yong Jing, Heon-Ju Lee, Chi Kyu Choi (2002) Journal of Korean Physical Society vol.41, p.769Google Scholar
  34. 34.
    Ferrari, C., Robertson, J. (2001) Physical Review B vol.63, p.121405-1–121405-1-4CrossRefGoogle Scholar
  35. 35.
    Ikeda, T., Teii, K. (2006) Diamond and Related Materials vol.15, p.635–638CrossRefGoogle Scholar
  36. 36.
    Kuzmany, H., Pfeiffer, R., Salk, N., Gunther, B. (2004) Carbon vol.42, p.911–917CrossRefGoogle Scholar
  37. 37.
    Pfeiffer, R., Kuzmany, H., Knoll, P., Bokova, S., Salk, N., Gunther, B. (2003) Diamond and Related Materials vol.12, p.268–271CrossRefGoogle Scholar
  38. 38.
    Grischke, M., Hieke, A., Morgenweck, F., Dimigen, H. (1998) Diamond and Related Materials vol.7, p.454–458CrossRefGoogle Scholar
  39. 39.
    Je-deok K., Kyung-hwang L., Kyu-young K., Hiroyuki S., Osamu T., Yunying Wu, and Yasushi I. (2003) Surface and Coatings Technology vol.162, p. 135–139CrossRefGoogle Scholar
  40. 40.
    Je-Deok K., Hiroyuki S., Osamu T. (2002) Vacuum vol.66, p.379–383CrossRefGoogle Scholar
  41. 41.
    Swain, B.P., Patil, S.B., Kumbhar, A., Dusane R.O. (2003) Thin Solid Films vol.430, p.186–188Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Physical; Electronics of Kaunas University of TechnologyKaunasLithuania

Personalised recommendations